{"title":"Hippocampal nicotinic acetylcholine receptor signaling mediates the anti-allodynic effect of ketamine and morphine on neuropathic pain.","authors":"Romina Rahiminezhad Seta, Samaneh Eftekhari Mahabadi, Ladan Delphi, Sakineh Alijanpour, Ameneh Rezayof","doi":"10.1016/j.neuroscience.2024.11.067","DOIUrl":null,"url":null,"abstract":"<p><p>The present study investigated the involvement of hippocampal nicotinic acetylcholine receptors (nAChRs) in the anti-allodynic effect of ketamine/morphine on neuropathic pain in adult male Wistar rats. Morphine or ketamine administration decreased the percentage of maximum possible effect (MPE%), indicating an analgesic effect. The most significant decrease occurred with a 5 mg/kg dose of morphine (average MPE% = 98), while a 0.5 mg/kg dose of ketamine resulted in a high response (average MPE% = 91), using decision trees as a machine learning tool. Combining morphine and ketamine improved neuropathic pain (average MPE% = 91). Intra-CA1 microinjection of mecamylamine (2 μg/rat) with morphine (3 mg/kg) reduced neuropathic pain (average MPE% = 94). Co-administration of lower doses of ketamine (0.1 mg/kg, i.p.) and mecamylamine (0.5 or 1 μg/rat) with morphine (3 mg/kg) led to a considerable reduction in pain (average MPE% = 91). Utilizing the generalized least squares (GLS) model enabled the establishment of a continuous relation between drug dose and MPE% as the outcome of interest. There was a 19.60 higher average MPE% for each mg/kg increase in morphine dose. In contrast, there was a 17.05 higher average MPE% for every 0.1 mg/kg increase in ketamine dose. Each 0.1 mg/kg increase in ketamine dose, when combined with morphine (3 mg/kg), led to a 30.85 higher average MPE%. A tenfold impact of increasing mecamylamine dosage on MPE% was observed when paired with morphine. Thus, hippocampal nAChRs play a significant role in mediating the anti-allodynic effect of ketamine and morphine in neuropathic pain.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"138-147"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.11.067","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigated the involvement of hippocampal nicotinic acetylcholine receptors (nAChRs) in the anti-allodynic effect of ketamine/morphine on neuropathic pain in adult male Wistar rats. Morphine or ketamine administration decreased the percentage of maximum possible effect (MPE%), indicating an analgesic effect. The most significant decrease occurred with a 5 mg/kg dose of morphine (average MPE% = 98), while a 0.5 mg/kg dose of ketamine resulted in a high response (average MPE% = 91), using decision trees as a machine learning tool. Combining morphine and ketamine improved neuropathic pain (average MPE% = 91). Intra-CA1 microinjection of mecamylamine (2 μg/rat) with morphine (3 mg/kg) reduced neuropathic pain (average MPE% = 94). Co-administration of lower doses of ketamine (0.1 mg/kg, i.p.) and mecamylamine (0.5 or 1 μg/rat) with morphine (3 mg/kg) led to a considerable reduction in pain (average MPE% = 91). Utilizing the generalized least squares (GLS) model enabled the establishment of a continuous relation between drug dose and MPE% as the outcome of interest. There was a 19.60 higher average MPE% for each mg/kg increase in morphine dose. In contrast, there was a 17.05 higher average MPE% for every 0.1 mg/kg increase in ketamine dose. Each 0.1 mg/kg increase in ketamine dose, when combined with morphine (3 mg/kg), led to a 30.85 higher average MPE%. A tenfold impact of increasing mecamylamine dosage on MPE% was observed when paired with morphine. Thus, hippocampal nAChRs play a significant role in mediating the anti-allodynic effect of ketamine and morphine in neuropathic pain.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.