Extreme wrinkling of the nuclear lamina is a morphological marker of cancer

IF 6.8 1区 医学 Q1 ONCOLOGY NPJ Precision Oncology Pub Date : 2024-12-02 DOI:10.1038/s41698-024-00775-8
Ting-Ching Wang, Christina R. Dollahon, Sneha Mishra, Hailee Patel, Samere Abolghasemzade, Ishita Singh, Vilmos Thomazy, Daniel G. Rosen, Vlad C. Sandulache, Saptarshi Chakraborty, Tanmay P. Lele
{"title":"Extreme wrinkling of the nuclear lamina is a morphological marker of cancer","authors":"Ting-Ching Wang, Christina R. Dollahon, Sneha Mishra, Hailee Patel, Samere Abolghasemzade, Ishita Singh, Vilmos Thomazy, Daniel G. Rosen, Vlad C. Sandulache, Saptarshi Chakraborty, Tanmay P. Lele","doi":"10.1038/s41698-024-00775-8","DOIUrl":null,"url":null,"abstract":"Nuclear atypia is a hallmark of cancer. A recent model posits that excess surface area, visible as folds/wrinkles in the lamina of a rounded nucleus, allows the nucleus to take on diverse shapes with little mechanical resistance. Whether this model is applicable to normal and cancer nuclei in human tissues is unclear. We image nuclear lamins in patient tissues and find: (a) nuclear laminar wrinkles are present in control and cancer tissue but are obscured in hematoxylin and eosin (H&E) images, (b) nuclei rarely have a smooth lamina, and (c) wrinkled nuclei assume diverse shapes. Deep learning reveals the presence of extreme nuclear laminar wrinkling in cancer tissues, which is confirmed by Fourier analysis. These data support a model in which excess surface area in the nuclear lamina enables nuclear shape diversity in vivo. Extreme laminar wrinkling is a marker of cancer, and imaging the lamina may benefit cancer diagnosis.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":" ","pages":"1-12"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41698-024-00775-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00775-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nuclear atypia is a hallmark of cancer. A recent model posits that excess surface area, visible as folds/wrinkles in the lamina of a rounded nucleus, allows the nucleus to take on diverse shapes with little mechanical resistance. Whether this model is applicable to normal and cancer nuclei in human tissues is unclear. We image nuclear lamins in patient tissues and find: (a) nuclear laminar wrinkles are present in control and cancer tissue but are obscured in hematoxylin and eosin (H&E) images, (b) nuclei rarely have a smooth lamina, and (c) wrinkled nuclei assume diverse shapes. Deep learning reveals the presence of extreme nuclear laminar wrinkling in cancer tissues, which is confirmed by Fourier analysis. These data support a model in which excess surface area in the nuclear lamina enables nuclear shape diversity in vivo. Extreme laminar wrinkling is a marker of cancer, and imaging the lamina may benefit cancer diagnosis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核层的极端起皱是癌症的形态学标志。
核异型性是癌症的标志。最近的一个模型假设,多余的表面积,在圆形细胞核的层上可以看到褶皱/皱纹,使得细胞核在很小的机械阻力下呈现出不同的形状。该模型是否适用于人体组织的正常核和癌核尚不清楚。我们对患者组织中的核层状蛋白进行成像,发现:(a)在对照组和癌组织中存在核层状皱纹,但在苏木精和伊红(H&E)图像中不明显;(b)细胞核很少有光滑的层状,(c)皱褶的细胞核形状多样。深度学习揭示了癌症组织中极端核层流褶皱的存在,傅里叶分析证实了这一点。这些数据支持一个模型,在该模型中,核层的多余表面积使体内的核形状多样性。极端的层流褶皱是癌症的标志,层流成像可能有助于癌症的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
期刊最新文献
Real life outcome analysis of breast cancer brain metastases treated with Trastuzumab Deruxtecan. A multi-modal deep learning model for prediction of Ki-67 for meningiomas using pretreatment MR images. Defective homologous recombination and genomic instability predict increased responsiveness to carbon ion radiotherapy in pancreatic cancer. Integrins identified as potential prognostic markers in osteosarcoma through multi-omics and multi-dataset analysis. Prediction of post-treatment recurrence in early-stage breast cancer using deep-learning with mid-infrared chemical histopathological imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1