Development of machine-learning-driven signatures for diagnosing and monitoring therapeutic response in major depressive disorder using integrated immune cell profiles and plasma cytokines.

IF 12.4 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Theranostics Pub Date : 2024-10-28 eCollection Date: 2024-01-01 DOI:10.7150/thno.102602
Shen He, Faming Zhao, Guangqiang Sun, Yue Shi, Tianlun Xu, Yu Zhang, Siyuan Li, Linna Zhang, Xingkun Chu, Chen Du, Dabing Yang, Jing Zhang, Changrong Ge, Jingjing Huang, Zuoquan Xie, Huafang Li
{"title":"Development of machine-learning-driven signatures for diagnosing and monitoring therapeutic response in major depressive disorder using integrated immune cell profiles and plasma cytokines.","authors":"Shen He, Faming Zhao, Guangqiang Sun, Yue Shi, Tianlun Xu, Yu Zhang, Siyuan Li, Linna Zhang, Xingkun Chu, Chen Du, Dabing Yang, Jing Zhang, Changrong Ge, Jingjing Huang, Zuoquan Xie, Huafang Li","doi":"10.7150/thno.102602","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Diagnosis and treatment efficacy of major depressive disorder (MDD) currently lack stable and reliable biomarkers. Previous research has suggested a potential association between immune cells, cytokines, and the pathophysiology and treatment of MDD. <b>Objective:</b> This study aims to investigate the relationship between immune cells, cytokines, and the diagnosis of MDD and treatment response, further utilizing machine learning algorithms to develop robust diagnostic and treatment response prediction models. <b>Methods:</b> Using mass cytometry by time-of-flight (CyTOF) technology and high-throughput cytokine detection, we analyzed 63 types of immune cells from 134 pre-treatment MDD patients. Among these patients, plasma data for 440 cytokines were obtained from 84 individuals. Additionally, we conducted the same set of immune cell and cytokine analyses on 50 healthy controls (HC). An 8-week follow-up was conducted to observe post-treatment changes in immune cells and cytokines. <b>Results:</b> By combing eight machine-learning algorithms with CyTOF and cytokine data, we constructed a diagnostic model for MDD patient with 16 indicators, achieving an AUC of 0.973 in the internal validation set. Additionally, a treatment response prediction model based 7 cytokines was developed, resulting in an AUC of 0.944 in the internal validation set. Furthermore, Mfuzz time-series analysis revealed that cytokines such as Basic fibroblast growth factor (bFGF), Interleukin 13 (IL-13), and Interleukin 1 receptor, type I (IL1R1) that revert towards normal levels after 8 weeks of treatment, suggesting their potential as therapeutic targets for MDD. <b>Conclusions:</b> Our diagnostic model derived from CyTOF and cytokines demonstrates high diagnostic value. However, relying solely on immune cells may not provide optimal predictions for antidepressant treatment response. In contrast, leveraging cytokines has proven valuable, leading to the construction of a seven-factor treatment response prediction model. Importantly, we observed that several significantly altered cytokines in MDD can normalize following antidepressant treatment, indicating their potential as therapeutic targets.</p>","PeriodicalId":22932,"journal":{"name":"Theranostics","volume":"14 18","pages":"7265-7280"},"PeriodicalIF":12.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610142/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theranostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/thno.102602","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Diagnosis and treatment efficacy of major depressive disorder (MDD) currently lack stable and reliable biomarkers. Previous research has suggested a potential association between immune cells, cytokines, and the pathophysiology and treatment of MDD. Objective: This study aims to investigate the relationship between immune cells, cytokines, and the diagnosis of MDD and treatment response, further utilizing machine learning algorithms to develop robust diagnostic and treatment response prediction models. Methods: Using mass cytometry by time-of-flight (CyTOF) technology and high-throughput cytokine detection, we analyzed 63 types of immune cells from 134 pre-treatment MDD patients. Among these patients, plasma data for 440 cytokines were obtained from 84 individuals. Additionally, we conducted the same set of immune cell and cytokine analyses on 50 healthy controls (HC). An 8-week follow-up was conducted to observe post-treatment changes in immune cells and cytokines. Results: By combing eight machine-learning algorithms with CyTOF and cytokine data, we constructed a diagnostic model for MDD patient with 16 indicators, achieving an AUC of 0.973 in the internal validation set. Additionally, a treatment response prediction model based 7 cytokines was developed, resulting in an AUC of 0.944 in the internal validation set. Furthermore, Mfuzz time-series analysis revealed that cytokines such as Basic fibroblast growth factor (bFGF), Interleukin 13 (IL-13), and Interleukin 1 receptor, type I (IL1R1) that revert towards normal levels after 8 weeks of treatment, suggesting their potential as therapeutic targets for MDD. Conclusions: Our diagnostic model derived from CyTOF and cytokines demonstrates high diagnostic value. However, relying solely on immune cells may not provide optimal predictions for antidepressant treatment response. In contrast, leveraging cytokines has proven valuable, leading to the construction of a seven-factor treatment response prediction model. Importantly, we observed that several significantly altered cytokines in MDD can normalize following antidepressant treatment, indicating their potential as therapeutic targets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Theranostics
Theranostics MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
25.40
自引率
1.60%
发文量
433
审稿时长
1 months
期刊介绍: Theranostics serves as a pivotal platform for the exchange of clinical and scientific insights within the diagnostic and therapeutic molecular and nanomedicine community, along with allied professions engaged in integrating molecular imaging and therapy. As a multidisciplinary journal, Theranostics showcases innovative research articles spanning fields such as in vitro diagnostics and prognostics, in vivo molecular imaging, molecular therapeutics, image-guided therapy, biosensor technology, nanobiosensors, bioelectronics, system biology, translational medicine, point-of-care applications, and personalized medicine. Encouraging a broad spectrum of biomedical research with potential theranostic applications, the journal rigorously peer-reviews primary research, alongside publishing reviews, news, and commentary that aim to bridge the gap between the laboratory, clinic, and biotechnology industries.
期刊最新文献
CXCR4-directed endoradiotherapy with [177Lu]Pentixather added to total body irradiation for myeloablative conditioning in patients with relapsed/refractory acute myeloid leukemia. Development of dual aptamers-functionalized c-MET PROTAC degraders for targeted therapy of osteosarcoma. Silk fibroin-based hydrogels for cartilage organoids in osteoarthritis treatment. Standardization and consensus in the development and application of bone organoids. First clinical utility of sensing Ultrasound Localization Microscopy (sULM): identifying renal pseudotumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1