Fisetin attenuates AlCl3-induced neurodegeneration by modulating oxidative stress and inflammatory cytokine release in adult albino wistar rats.

Q1 Environmental Science Toxicology Reports Pub Date : 2024-11-13 eCollection Date: 2024-12-01 DOI:10.1016/j.toxrep.2024.101812
Emeka Anyanwu G, Jacinta Nwachukwu I, Rademene Oria S, Kosisochukwu Obasi K, Precious Ekwueme E, Nto Nto J, Chinyere Anyanwu N
{"title":"Fisetin attenuates AlCl<sub>3</sub>-induced neurodegeneration by modulating oxidative stress and inflammatory cytokine release in adult albino wistar rats.","authors":"Emeka Anyanwu G, Jacinta Nwachukwu I, Rademene Oria S, Kosisochukwu Obasi K, Precious Ekwueme E, Nto Nto J, Chinyere Anyanwu N","doi":"10.1016/j.toxrep.2024.101812","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Natural flavonoids have powerful antioxidant and anti-inflammatory activities against neurodegenerative diseases. Fisetin is a powerful flavonoid that targets a variety of neurological disorders. Aluminum (Al) has been linked to several neurological conditions, such as Parkinsons disease, autism, and Alzheimer's disease (AD). This study was designed to assess the modulatory role of fisetin in reversing oxidative stress and neuroinflammation caused by Aluminum chloride (AlCl3) induced neurological conditions in rats.</p><p><strong>Methods: </strong>Adult male Wistar were randomly divided into eight groups of four animals per group. Group 1; the control group received phosphate-buffered saline, group 2 received 100 mg/kg/bodyweight of aluminum chloride, and group 3,4, and 5 received 25, 50, and 75 mg/kg/bodyweight of fisetin respectively for 21 days. Groups 6, 7, and 8 received 25, 50, and 75 mg/kg/bodyweight of fisetin for 14 days followed by 100 mg/kg/bodyweight of aluminum chloride for 7 days respectively. The administration was via the oral route. Following treatment, the rats were euthanized, and biochemical alterations were observed by measuring the serum levels of Glutathione S-Transferase (GST) and Malondialdehyde (MDA) for oxidative stress and Interleukin-6 (IL-6) for neuroinflammation. Furthermore, histopathological evaluations of the thalamus were carried out using routine Hematoxylin and Eosin (H&E) and Cresyl Fast Violet (CFV) techniques while expressions of Glial Fibrillary Acidic Protein (GFAP) for astrocytes, and Ionized Calcium Binding Adapter Molecule 1 (IBA1) for microglia, were examined by immunohistochemical methods.</p><p><strong>Results: </strong>The findings in the AlCl<sub>3</sub> group indicated a rise in lipid peroxidation, decreased antioxidant activity, altered thalamic histomorphology, and increased expression of GFAP and IBA1 markers for astrocytes and microglia, respectively. These effects were mitigated in the Fisetin pretreated groups.</p><p><strong>Conclusion: </strong>These results imply that fisetin can attenuate AlCl<sub>3</sub>-induced neurodegeneration possibly by mitigating oxidative stress and neuroinflammation.</p>","PeriodicalId":23129,"journal":{"name":"Toxicology Reports","volume":"13 ","pages":"101812"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609245/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.toxrep.2024.101812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: Natural flavonoids have powerful antioxidant and anti-inflammatory activities against neurodegenerative diseases. Fisetin is a powerful flavonoid that targets a variety of neurological disorders. Aluminum (Al) has been linked to several neurological conditions, such as Parkinsons disease, autism, and Alzheimer's disease (AD). This study was designed to assess the modulatory role of fisetin in reversing oxidative stress and neuroinflammation caused by Aluminum chloride (AlCl3) induced neurological conditions in rats.

Methods: Adult male Wistar were randomly divided into eight groups of four animals per group. Group 1; the control group received phosphate-buffered saline, group 2 received 100 mg/kg/bodyweight of aluminum chloride, and group 3,4, and 5 received 25, 50, and 75 mg/kg/bodyweight of fisetin respectively for 21 days. Groups 6, 7, and 8 received 25, 50, and 75 mg/kg/bodyweight of fisetin for 14 days followed by 100 mg/kg/bodyweight of aluminum chloride for 7 days respectively. The administration was via the oral route. Following treatment, the rats were euthanized, and biochemical alterations were observed by measuring the serum levels of Glutathione S-Transferase (GST) and Malondialdehyde (MDA) for oxidative stress and Interleukin-6 (IL-6) for neuroinflammation. Furthermore, histopathological evaluations of the thalamus were carried out using routine Hematoxylin and Eosin (H&E) and Cresyl Fast Violet (CFV) techniques while expressions of Glial Fibrillary Acidic Protein (GFAP) for astrocytes, and Ionized Calcium Binding Adapter Molecule 1 (IBA1) for microglia, were examined by immunohistochemical methods.

Results: The findings in the AlCl3 group indicated a rise in lipid peroxidation, decreased antioxidant activity, altered thalamic histomorphology, and increased expression of GFAP and IBA1 markers for astrocytes and microglia, respectively. These effects were mitigated in the Fisetin pretreated groups.

Conclusion: These results imply that fisetin can attenuate AlCl3-induced neurodegeneration possibly by mitigating oxidative stress and neuroinflammation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology Reports
Toxicology Reports Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
7.60
自引率
0.00%
发文量
228
审稿时长
11 weeks
期刊最新文献
High-throughput non-homogenous 3D polycaprolactone scaffold for cancer cell and cancer-associated fibroblast mini-tumors to evaluate drug treatment response. Screening of bioactive components in Ferula assafo dried oleo-gum resin and assessment of its protective function against cadmium-induced oxidative damage, genotoxicity, and cytotoxicity in rats. Effects of dietary acrylamide on kidney and liver health: Molecular mechanisms and pharmacological implications. Fenofibrate ameliorated atorvastatin and piperine-induced ROS mediated reproductive toxicity in male Wistar rats. Interleukin-10 levels in azithromycin-induced cardiac damage and the protective role of combined selenium and vitamin E treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1