Analytical prediction of genetic contribution across multiple recurrent backcrossing generations.

IF 4.4 1区 农林科学 Q1 AGRONOMY Theoretical and Applied Genetics Pub Date : 2024-11-30 DOI:10.1007/s00122-024-04774-y
Temitayo Ajayi, Jason LaCombe, Güven Ince, Trevor Yeats
{"title":"Analytical prediction of genetic contribution across multiple recurrent backcrossing generations.","authors":"Temitayo Ajayi, Jason LaCombe, Güven Ince, Trevor Yeats","doi":"10.1007/s00122-024-04774-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>We derive formulas for the residual donor genome content during trait introgression via recurrent backcrossing and use these formulas to predict (without simulation) residual donor genome content for five future generations. Trait introgression is a common method for introducing valuable genes or alleles into breeding populations and inbred cultivars. The particular breeding scheme is usually designed to maximize the genetic similarity of the converted lines to the recurrent parent while minimizing cost and time to recover the near isogenic lines. Key variables include the number of generations and crosses and how to apply genotyping and selection. One form of trait introgression, which is our focus, involves an initial cross of an elite, homozygous recurrent parent line with a non-recurrent, homozygous donor line. The descendants of this cross are backcrossed with the recurrent parent for several generation before self-pollination in the final generation to recover lines with the alleles of interest. In this paper, we derive analytical formulas that characterize the stochastic nature of residual donor genome content during this form of trait introgression. The development of these formulas expands the mathematical methods one can integrate into breeding design. In particular, we show we can use our formulas in a novel mathematical program to allocate resources to optimize the reduction of residual donor genome content.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"137 12","pages":"279"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04774-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: We derive formulas for the residual donor genome content during trait introgression via recurrent backcrossing and use these formulas to predict (without simulation) residual donor genome content for five future generations. Trait introgression is a common method for introducing valuable genes or alleles into breeding populations and inbred cultivars. The particular breeding scheme is usually designed to maximize the genetic similarity of the converted lines to the recurrent parent while minimizing cost and time to recover the near isogenic lines. Key variables include the number of generations and crosses and how to apply genotyping and selection. One form of trait introgression, which is our focus, involves an initial cross of an elite, homozygous recurrent parent line with a non-recurrent, homozygous donor line. The descendants of this cross are backcrossed with the recurrent parent for several generation before self-pollination in the final generation to recover lines with the alleles of interest. In this paper, we derive analytical formulas that characterize the stochastic nature of residual donor genome content during this form of trait introgression. The development of these formulas expands the mathematical methods one can integrate into breeding design. In particular, we show we can use our formulas in a novel mathematical program to allocate resources to optimize the reduction of residual donor genome content.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多代回交遗传贡献的分析预测。
关键信息:我们通过反复回交推导出性状渗入过程中剩余供体基因组含量的公式,并使用这些公式预测(无需模拟)未来五代的剩余供体基因组含量。性状渐渗是将有价值的基因或等位基因引入育种群体和自交系品种的常用方法。特定的育种方案通常是为了最大限度地提高转化系与循环亲本的遗传相似性,同时最大限度地减少恢复接近等基因系的成本和时间。关键变量包括世代数和杂交数以及如何应用基因分型和选择。性状渐渗的一种形式,这是我们关注的焦点,涉及一个精英的,纯合子的复发亲本系与一个非复发的,纯合子的供体系的初始杂交。该杂交的后代在最后一代自花授粉前与回交亲本进行几代回交,以恢复具有感兴趣等位基因的系。在本文中,我们推导了分析公式,描述了在这种性状渗入形式中剩余供体基因组内容的随机性。这些公式的发展扩展了可以用于育种设计的数学方法。特别是,我们展示了我们可以在一个新的数学程序中使用我们的公式来分配资源,以优化减少剩余供体基因组的含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
期刊最新文献
BrCYP71 mutation resulted in stay-green in pak choi (Brassica rapa L. ssp. chinensis). Comparative genomic prediction of resistance to Fusarium wilt (Fusarium oxysporum f. sp. niveum race 2) in watermelon: parametric and nonparametric approaches. Analysis of the genetic basis of fiber-related traits and flowering time in upland cotton using machine learning. Genetic dissection of foxtail millet bristles using combined QTL mapping and RNA-seq. Genomic selection shows improved expected genetic gain over phenotypic selection of agronomic traits in allotetraploid white clover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1