[Effects of Exogenous Substances on the Remediation of Soil Contaminated by Heavy Metals and Greenhouse Gas Emissions by Pennisetum americanum×Pennisetum purpureum and Helianthus annuus].

Q2 Environmental Science 环境科学 Pub Date : 2024-11-08 DOI:10.13227/j.hjkx.202311263
Chuan-Qian He, Bo Gao, Xing-Feng Zhang, Min-Ni Chen, Qian-Kui Yu, Mao-Sheng Hu, Hong-Xu Chen, Ye-Xi Liang, Hai-Feng Yi, Peng-Wei Zhang
{"title":"[Effects of Exogenous Substances on the Remediation of Soil Contaminated by Heavy Metals and Greenhouse Gas Emissions by <i>Pennisetum americanum</i>×<i>Pennisetum purpureum</i> and <i>Helianthus annuus</i>].","authors":"Chuan-Qian He, Bo Gao, Xing-Feng Zhang, Min-Ni Chen, Qian-Kui Yu, Mao-Sheng Hu, Hong-Xu Chen, Ye-Xi Liang, Hai-Feng Yi, Peng-Wei Zhang","doi":"10.13227/j.hjkx.202311263","DOIUrl":null,"url":null,"abstract":"<p><p>The application of exogenous substances has important effects on soil greenhouse gas emissions and phytoremediation of soil contaminated by heavy metals. <i>Pennisetum americanum</i>×<i>Pennisetum purpureum</i> and <i>Helianthus annuus</i> were used as remediation plants in this study. The effects of different exogenous substances on phytoremediation and greenhouse gas emissions of heavy metal-contaminated soil were studied. The results showed that the application of exogenous substances had little effect on the pH value of <i>P. americanum</i>×<i>P. purpureum</i> soil but significantly reduced the pH value of <i>H. annuus</i> soil compared with that of the background soil. The application of potassium fertilizer (KCl) increased the biomass of plants, enhanced the activities of superoxide dismutase (SOD) and peroxidase (CAT), and improved the stress resistance of <i>H. annuus</i>. The application of gibberellin (GA<sub>3</sub>) and indole butyric acid (IBA) decreased the antioxidant enzyme activity and the content of malondialdehyde (MDA) and alleviated the stress of heavy metals in <i>H. annuus.</i> The KCl and EDDS treatments affected the accumulation of Cd and Pb in plants, respectively. The application of KCl significantly increased the accumulation of Cd in <i>P. americanum</i>×<i>P. purpureum</i> and <i>H. annuus</i> and the accumulation of Cd in <i>P. americanum</i>×<i>P. purpureum</i> roots, and the application of EDDS significantly increased the accumulation of Pb in <i>H. annuus</i> shoots and <i>H. annuus</i> roots. Compared with those in the CK treatment, the application of KCl and EDDS could reduce the cumulative CO<sub>2</sub> emissions in soil, which were 20.4% and 5.0% in <i>P. americanum</i>×<i>P. purpureum</i> planting soil and 15.8% and 45.9% in <i>H. annuus</i> planting soil, respectively. However, the application of GA<sub>3</sub> and IBA could increase the cumulative CO<sub>2</sub> emissions. Exogenous substance treatment increased the cumulative N<sub>2</sub>O emissions of <i>P. americanum</i>×<i>P. purpureum</i> soil but decreased the cumulative N<sub>2</sub>O emissions of <i>H. annuus</i> soil to different degrees. Compared with those in the CK treatment, the application of KCl and GA<sub>3</sub> significantly reduced the cumulative N<sub>2</sub>O emissions of <i>H. annuus</i> by 40.5% and 43.5%, respectively. The application of EDDS and IBA reduced the cumulative N<sub>2</sub>O emissions by 20.1% and 28.4%, respectively. In conclusion, the application of GA<sub>3</sub> and IBA alleviated the heavy metal stress of <i>H. annuus</i>, and the KCl and EDDS treatments enhanced phytoremediation efficiency and reduced soil greenhouse gas emissions to varying degrees.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"45 11","pages":"6689-6703"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202311263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The application of exogenous substances has important effects on soil greenhouse gas emissions and phytoremediation of soil contaminated by heavy metals. Pennisetum americanum×Pennisetum purpureum and Helianthus annuus were used as remediation plants in this study. The effects of different exogenous substances on phytoremediation and greenhouse gas emissions of heavy metal-contaminated soil were studied. The results showed that the application of exogenous substances had little effect on the pH value of P. americanum×P. purpureum soil but significantly reduced the pH value of H. annuus soil compared with that of the background soil. The application of potassium fertilizer (KCl) increased the biomass of plants, enhanced the activities of superoxide dismutase (SOD) and peroxidase (CAT), and improved the stress resistance of H. annuus. The application of gibberellin (GA3) and indole butyric acid (IBA) decreased the antioxidant enzyme activity and the content of malondialdehyde (MDA) and alleviated the stress of heavy metals in H. annuus. The KCl and EDDS treatments affected the accumulation of Cd and Pb in plants, respectively. The application of KCl significantly increased the accumulation of Cd in P. americanum×P. purpureum and H. annuus and the accumulation of Cd in P. americanum×P. purpureum roots, and the application of EDDS significantly increased the accumulation of Pb in H. annuus shoots and H. annuus roots. Compared with those in the CK treatment, the application of KCl and EDDS could reduce the cumulative CO2 emissions in soil, which were 20.4% and 5.0% in P. americanum×P. purpureum planting soil and 15.8% and 45.9% in H. annuus planting soil, respectively. However, the application of GA3 and IBA could increase the cumulative CO2 emissions. Exogenous substance treatment increased the cumulative N2O emissions of P. americanum×P. purpureum soil but decreased the cumulative N2O emissions of H. annuus soil to different degrees. Compared with those in the CK treatment, the application of KCl and GA3 significantly reduced the cumulative N2O emissions of H. annuus by 40.5% and 43.5%, respectively. The application of EDDS and IBA reduced the cumulative N2O emissions by 20.1% and 28.4%, respectively. In conclusion, the application of GA3 and IBA alleviated the heavy metal stress of H. annuus, and the KCl and EDDS treatments enhanced phytoremediation efficiency and reduced soil greenhouse gas emissions to varying degrees.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[外源物质对狼尾草americanum×Pennisetum和向日葵修复土壤重金属污染和温室气体排放的影响]。
外源物质的施用对土壤温室气体排放和重金属污染土壤的植物修复具有重要影响。本研究以狼尾草americanum×Pennisetum和向日葵为修复植物。研究了不同外源物质对重金属污染土壤植物修复和温室气体排放的影响。结果表明,外源物质的施用对P. americanum×P的pH值影响不大。与背景土相比,紫荆土的pH值显著降低。施用钾肥(KCl)增加了植株生物量,增强了超氧化物歧化酶(SOD)和过氧化物酶(CAT)活性,提高了黄杨的抗逆性。赤霉素(GA3)和吲哚丁酸(IBA)的施用降低了黄杨抗氧化酶活性和丙二醛(MDA)含量,减轻了重金属胁迫。KCl和EDDS处理分别影响植株Cd和Pb的积累。KCl的施用显著增加了americanum×P中Cd的积累。紫荆和黄杨与americanum×P中Cd的积累。EDDS处理显著提高了金针桃茎部和金针桃根中Pb的积累。与CK处理相比,施用KCl和EDDS可使P. americanum×P土壤累积CO2排放量分别减少20.4%和5.0%。紫荆种植土壤中占15.8%,黄柳种植土壤中占45.9%。然而,GA3和IBA的应用会增加CO2的累积排放量。外源物质处理增加了P. americanum×P累积N2O排放量。但不同程度地降低了黄杨土壤N2O的累积排放。与CK处理相比,施用KCl和GA3显著降低了黄杨N2O的累积排放量,分别降低了40.5%和43.5%。EDDS和IBA的应用分别减少了20.1%和28.4%的N2O累积排放量。综上所述,GA3和IBA的施用缓解了柽柳重金属胁迫,KCl和EDDS处理不同程度地提高了植物修复效率,减少了土壤温室气体排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学
环境科学 Environmental Science-Environmental Science (all)
CiteScore
4.40
自引率
0.00%
发文量
15329
期刊介绍:
期刊最新文献
[Key Problems and Strategies for Greenhouse Gas Reduction in China's Wastewater Treatment Industry]. [Legacy Effects of Long-term Straw Returning on Straw Degradation and Microbial Communities of the Aftercrop]. [Mechanisms of Rhizosphere Microorganisms in Regulating Plant Root System Architecture in Acidic Soils]. [Meta-analysis of the Occurrence Characteristics and Influencing Factors of Microplastics in Agricultural Soil in China]. [Meta-analysis on the Effects of Organic Fertilizer Application on Global Greenhouse Gas Emissions from Agricultural Soils].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1