Signatures of transmission in within-host Mycobacterium tuberculosis complex variation: a retrospective genomic epidemiology study.

IF 20.9 1区 生物学 Q1 INFECTIOUS DISEASES Lancet Microbe Pub Date : 2025-01-01 Epub Date: 2024-11-28 DOI:10.1016/j.lanmic.2024.06.003
Katharine S Walter, Ted Cohen, Barun Mathema, Caroline Colijn, Benjamin Sobkowiak, Iñaki Comas, Galo A Goig, Julio Croda, Jason R Andrews
{"title":"Signatures of transmission in within-host Mycobacterium tuberculosis complex variation: a retrospective genomic epidemiology study.","authors":"Katharine S Walter, Ted Cohen, Barun Mathema, Caroline Colijn, Benjamin Sobkowiak, Iñaki Comas, Galo A Goig, Julio Croda, Jason R Andrews","doi":"10.1016/j.lanmic.2024.06.003","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mycobacterium tuberculosis complex (MTBC) species evolve slowly, so isolates from individuals linked in transmission often have identical or nearly identical genomes, making it difficult to reconstruct transmission chains. Finding additional sources of shared MTBC variation could help overcome this problem. Previous studies have reported MTBC diversity within infected individuals; however, whether within-host variation improves transmission inferences remains unclear. Here, we aimed to quantify within-host MTBC variation and assess whether such information improves transmission inferences.</p><p><strong>Methods: </strong>We conducted a retrospective genomic epidemiology study in which we reanalysed publicly available sequence data from household transmission studies published in PubMed from database inception until Jan 31, 2024, for which both genomic and epidemiological contact data were available, using household membership as a proxy for transmission linkage. We quantified minority variants (ie, positions with two or more alleles each supported by at least five-fold coverage and with a minor allele frequency of 1% or more) outside of PE and PPE genes, within individual samples and shared across samples. We used receiver operator characteristic (ROC) curves to compare the performance of a general linear model for household membership that included shared minority variants and one that included only fixed genetic differences.</p><p><strong>Findings: </strong>We identified three MTBC household transmission studies with publicly available whole-genome sequencing data and epidemiological linkages: a household transmission study in Vitória, Brazil (Colangeli et al), a retrospective population-based study of paediatric tuberculosis in British Columbia, Canada (Guthrie et al), and a retrospective population-based study in Oxfordshire, England (Walker et al). We found moderate levels of minority variation present in MTBC sequence data from cultured isolates that varied significantly across studies: mean 168·6 minority variants (95% CI 151·4-185·9) for the Colangeli et al dataset, 5·8 (1·5-10·2) for Guthrie et al (p<0·0001, Wilcoxon rank sum test, vs Colangeli et al), and 7·1 (2·4-11·9) for Walker et al (p<0·0001, Wilcoxon rank sum test, vs Colangeli et al). Isolates from household pairs shared more minority variants than did randomly selected pairs of isolates: mean 97·7 shared minority variants (79·1-116·3) versus 9·8 (8·6-11·0) in Colangeli et al, 0·8 (0·1-1·5) versus 0·2 (0·1-0·2) in Guthrie et al, and 0·7 (0·1-1·3) versus 0·2 (0·2-0·2) in Walker et al (all p<0·0001, Wilcoxon rank sum test). Shared within-host variation was significantly associated with household membership (odds ratio 1·51 [95% CI 1·30-1·71], p<0·0001), for one standard deviation increase in shared minority variants. Models that included shared within-host variation versus models without within-host variation improved the accuracy of predicting household membership in all three studies: area under the ROC curve 0·95 versus 0·92 for the Colangeli et al study, 0·99 versus 0·95 for the Guthrie et al study, and 0·93 versus 0·91 for the Walker et al study.</p><p><strong>Interpretation: </strong>Within-host MTBC variation persists through culture of sputum and could enhance the resolution of transmission inferences. The substantial differences in minority variation recovered across studies highlight the need to optimise approaches to recover and incorporate within-host variation into automated phylogenetic and transmission inference.</p><p><strong>Funding: </strong>National Institutes of Health.</p>","PeriodicalId":46633,"journal":{"name":"Lancet Microbe","volume":" ","pages":"100936"},"PeriodicalIF":20.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Microbe","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.lanmic.2024.06.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Mycobacterium tuberculosis complex (MTBC) species evolve slowly, so isolates from individuals linked in transmission often have identical or nearly identical genomes, making it difficult to reconstruct transmission chains. Finding additional sources of shared MTBC variation could help overcome this problem. Previous studies have reported MTBC diversity within infected individuals; however, whether within-host variation improves transmission inferences remains unclear. Here, we aimed to quantify within-host MTBC variation and assess whether such information improves transmission inferences.

Methods: We conducted a retrospective genomic epidemiology study in which we reanalysed publicly available sequence data from household transmission studies published in PubMed from database inception until Jan 31, 2024, for which both genomic and epidemiological contact data were available, using household membership as a proxy for transmission linkage. We quantified minority variants (ie, positions with two or more alleles each supported by at least five-fold coverage and with a minor allele frequency of 1% or more) outside of PE and PPE genes, within individual samples and shared across samples. We used receiver operator characteristic (ROC) curves to compare the performance of a general linear model for household membership that included shared minority variants and one that included only fixed genetic differences.

Findings: We identified three MTBC household transmission studies with publicly available whole-genome sequencing data and epidemiological linkages: a household transmission study in Vitória, Brazil (Colangeli et al), a retrospective population-based study of paediatric tuberculosis in British Columbia, Canada (Guthrie et al), and a retrospective population-based study in Oxfordshire, England (Walker et al). We found moderate levels of minority variation present in MTBC sequence data from cultured isolates that varied significantly across studies: mean 168·6 minority variants (95% CI 151·4-185·9) for the Colangeli et al dataset, 5·8 (1·5-10·2) for Guthrie et al (p<0·0001, Wilcoxon rank sum test, vs Colangeli et al), and 7·1 (2·4-11·9) for Walker et al (p<0·0001, Wilcoxon rank sum test, vs Colangeli et al). Isolates from household pairs shared more minority variants than did randomly selected pairs of isolates: mean 97·7 shared minority variants (79·1-116·3) versus 9·8 (8·6-11·0) in Colangeli et al, 0·8 (0·1-1·5) versus 0·2 (0·1-0·2) in Guthrie et al, and 0·7 (0·1-1·3) versus 0·2 (0·2-0·2) in Walker et al (all p<0·0001, Wilcoxon rank sum test). Shared within-host variation was significantly associated with household membership (odds ratio 1·51 [95% CI 1·30-1·71], p<0·0001), for one standard deviation increase in shared minority variants. Models that included shared within-host variation versus models without within-host variation improved the accuracy of predicting household membership in all three studies: area under the ROC curve 0·95 versus 0·92 for the Colangeli et al study, 0·99 versus 0·95 for the Guthrie et al study, and 0·93 versus 0·91 for the Walker et al study.

Interpretation: Within-host MTBC variation persists through culture of sputum and could enhance the resolution of transmission inferences. The substantial differences in minority variation recovered across studies highlight the need to optimise approaches to recover and incorporate within-host variation into automated phylogenetic and transmission inference.

Funding: National Institutes of Health.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Lancet Microbe
Lancet Microbe Multiple-
CiteScore
27.20
自引率
0.80%
发文量
278
审稿时长
6 weeks
期刊介绍: The Lancet Microbe is a gold open access journal committed to publishing content relevant to clinical microbiologists worldwide, with a focus on studies that advance clinical understanding, challenge the status quo, and advocate change in health policy.
期刊最新文献
R21 in Matrix-M adjuvant in UK malaria-naive adult men and non-pregnant women aged 18-45 years: an open-label, partially blinded, phase 1-2a controlled human malaria infection study. Emergence of extensively drug-resistant Pseudomonas aeruginosa ST308 co-producing Klebsiella pneumoniae carbapenemase and New Delhi metallo-β-lactamase in Viet Nam. Global wastewater surveillance for pathogens with pandemic potential: opportunities and challenges. Critical loss: the effects of VEuPathDB defunding on global health. Antimicrobial resistance: a concise update.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1