WNT9A and WNT9B in Development and Disease.

IF 2.2 3区 生物学 Q4 CELL BIOLOGY Differentiation Pub Date : 2024-11-22 DOI:10.1016/j.diff.2024.100820
Amber D Ide, Stephanie Grainger
{"title":"WNT9A and WNT9B in Development and Disease.","authors":"Amber D Ide, Stephanie Grainger","doi":"10.1016/j.diff.2024.100820","DOIUrl":null,"url":null,"abstract":"<p><p>WNT9 paralogues, WNT9A and WNT9B, are secreted ligands driving both the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. These pathways play roles in cell fate determination, embryonic patterning, bone development, and organogenesis, among other biological processes. Studies of Wnt9a and Wnt9b mutant animals demonstrate that they have specific and overlapping roles in these processes. Wnt9a is critical in directing stem and progenitor cell fate during hematopoietic stem cell development, proper bone formation, and chondrogenesis, while Wnt9b is important for kidney and heart development. Both proteins are essential in craniofacial development and convergent extension movements. Dysregulated expression of human WNT9A and WNT9B have been implicated in different cancers and disease, suggesting these proteins or their downstream pathways may represent potential therapeutic targets.</p>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":" ","pages":"100820"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.diff.2024.100820","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

WNT9 paralogues, WNT9A and WNT9B, are secreted ligands driving both the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. These pathways play roles in cell fate determination, embryonic patterning, bone development, and organogenesis, among other biological processes. Studies of Wnt9a and Wnt9b mutant animals demonstrate that they have specific and overlapping roles in these processes. Wnt9a is critical in directing stem and progenitor cell fate during hematopoietic stem cell development, proper bone formation, and chondrogenesis, while Wnt9b is important for kidney and heart development. Both proteins are essential in craniofacial development and convergent extension movements. Dysregulated expression of human WNT9A and WNT9B have been implicated in different cancers and disease, suggesting these proteins or their downstream pathways may represent potential therapeutic targets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WNT9A和WNT9B在发育和疾病中的作用。
WNT9类似物WNT9A和WNT9B是驱动典型(依赖β-catenin)和非典型(不依赖β-catenin) Wnt信号通路的分泌配体。这些途径在细胞命运决定、胚胎模式、骨骼发育和器官发生等生物过程中发挥作用。对Wnt9a和Wnt9b突变动物的研究表明,它们在这些过程中具有特定的和重叠的作用。Wnt9a在造血干细胞发育、正常骨形成和软骨形成过程中指导干细胞和祖细胞的命运至关重要,而Wnt9b在肾脏和心脏发育中很重要。这两种蛋白质在颅面发育和会聚伸展运动中都是必不可少的。人类WNT9A和WNT9B的表达失调与不同的癌症和疾病有关,表明这些蛋白或其下游途径可能代表潜在的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Differentiation
Differentiation 生物-发育生物学
CiteScore
4.10
自引率
3.40%
发文量
38
审稿时长
51 days
期刊介绍: Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal. The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest. The principal subject areas the journal covers are: • embryonic patterning and organogenesis • human development and congenital malformation • mechanisms of cell lineage commitment • tissue homeostasis and oncogenic transformation • establishment of cellular polarity • stem cell differentiation • cell reprogramming mechanisms • stability of the differentiated state • cell and tissue interactions in vivo and in vitro • signal transduction pathways in development and differentiation • carcinogenesis and cancer • mechanisms involved in cell growth and division especially relating to cancer • differentiation in regeneration and ageing • therapeutic applications of differentiation processes.
期刊最新文献
NOTCH1, 2, and 3 receptors enhance osteoblastogenesis of mesenchymal C3H10T1/2 cells and inhibit this process in preosteoblastic MC3T3-E1 cells. Delamination of chick cephalic neural crest cells requires an MMP14-dependent downregulation of Cadherin-6B. SMAD2/3 signaling determines the colony architecture in a hydrozoan, Dynamena pumila. Regulation of trophectoderm morphogenesis by small GTPase RHOA through HIPPO signaling-dependent and -independent mechanisms in mouse preimplantation development. WNT16 primer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1