Xiaowen Wang, Wenbin Cai, Ting Liang, Hui Li, Yingjie Gu, Xiaojiao Wei, Hong Zhang, Xiaojun Yang
{"title":"The matrix stiffness is increased in the eutopic endometrium of adenomyosis patients: a study based on atomic force microscopy and histochemistry.","authors":"Xiaowen Wang, Wenbin Cai, Ting Liang, Hui Li, Yingjie Gu, Xiaojiao Wei, Hong Zhang, Xiaojun Yang","doi":"10.4081/ejh.2024.4131","DOIUrl":null,"url":null,"abstract":"<p><p>Previous ultrasound studies suggest that patients with adenomyosis (AM) exhibit increased uterine cavity stiffness, although direct evidence regarding extracellular matrix (ECM) content and its specific impact on endometrial stiffness remains limited. This study utilized atomic force microscopy to directly measure endometrial stiffness and collagen morphology, enabling a detailed analysis of the endometrium's mechanical properties: through this approach, we established direct evidence of increased endometrial stiffness and fibrosis in patients with AM. Endometrial specimens were also stained with Picrosirius red or Masson's trichrome to quantify fibrosis, and additional analyses assessed α-SMA and Ki-67 expression. Studies indicate that pathological conditions significantly influence the mechanical properties of endometrial tissue. Specifically, adenomyotic endometrial tissue demonstrates increased stiffness, associated with elevated ECM and fibrosis content, whereas normal endometrial samples are softer with lower ECM content. AM appears to alter both the mechanical and histological characteristics of the eutopic endometrium. Higher ECM content may significantly impact endometrial mechanical properties, potentially contributing to AM-associated decidualization defects and fertility challenges.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"68 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694501/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Histochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4081/ejh.2024.4131","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous ultrasound studies suggest that patients with adenomyosis (AM) exhibit increased uterine cavity stiffness, although direct evidence regarding extracellular matrix (ECM) content and its specific impact on endometrial stiffness remains limited. This study utilized atomic force microscopy to directly measure endometrial stiffness and collagen morphology, enabling a detailed analysis of the endometrium's mechanical properties: through this approach, we established direct evidence of increased endometrial stiffness and fibrosis in patients with AM. Endometrial specimens were also stained with Picrosirius red or Masson's trichrome to quantify fibrosis, and additional analyses assessed α-SMA and Ki-67 expression. Studies indicate that pathological conditions significantly influence the mechanical properties of endometrial tissue. Specifically, adenomyotic endometrial tissue demonstrates increased stiffness, associated with elevated ECM and fibrosis content, whereas normal endometrial samples are softer with lower ECM content. AM appears to alter both the mechanical and histological characteristics of the eutopic endometrium. Higher ECM content may significantly impact endometrial mechanical properties, potentially contributing to AM-associated decidualization defects and fertility challenges.
期刊介绍:
The Journal publishes original papers concerning investigations by histochemical and immunohistochemical methods, and performed with the aid of light, super-resolution and electron microscopy, cytometry and imaging techniques. Coverage extends to:
functional cell and tissue biology in animals and plants;
cell differentiation and death;
cell-cell interaction and molecular trafficking;
biology of cell development and senescence;
nerve and muscle cell biology;
cellular basis of diseases.
The histochemical approach is nowadays essentially aimed at locating molecules in the very place where they exert their biological roles, and at describing dynamically specific chemical activities in living cells. Basic research on cell functional organization is essential for understanding the mechanisms underlying major biological processes such as differentiation, the control of tissue homeostasis, and the regulation of normal and tumor cell growth. Even more than in the past, the European Journal of Histochemistry, as a journal of functional cytology, represents the venue where cell scientists may present and discuss their original results, technical improvements and theories.