Assessing the influence of smoking on inflammatory markers in bacillus Calmette Guérin response among bladder cancer patients: a novel machine-learning approach.

IF 4.9 2区 医学 Q1 UROLOGY & NEPHROLOGY Minerva Urology and Nephrology Pub Date : 2024-12-03 DOI:10.23736/S2724-6051.24.05876-2
Matteo Ferro, Octavian S Tataru, Giuseppe Fallara, Cristian Fiori, Matteo Manfredi, Francesco Claps, Rodolfo Hurle, Nicolò M Buffi, Giovanni Lughezzani, Massimo Lazzeri, Achille Aveta, Savio D Pandolfo, Biagio Barone, Felice Crocetto, Pasquale Ditonno, Giuseppe Lucarelli, Francesco Lasorsa, Giuseppe Carrieri, Gian M Busetto, Ugo G Falagario, Francesco Del Giudice, Martina Maggi, Francesco Cantiello, Marco Borghesi, Carlo Terrone, Pierluigi Bove, Alessandro Antonelli, Alessandro Veccia, Andrea Mari, Stefano Luzzago, Raul Gherasim, Ciprian Todea-Moga, Andrea Minervini, Gennaro Musi, Francesco A Mistretta, Roberto Bianchi, Marco Tozzi, Francesco Soria, Paolo Gontero, Michele Marchioni, Letizia M Janello, Daniela Terracciano, Giorgio I Russo, Luigi Schips, Sisto Perdonà, Riccardo Autorino, Michele Catellani, Chiara Sighinolfi, Emanuele Montanari, Savino M DI Stasi, Francesco Porpiglia, Bernardo Rocco, Ottavio de Cobelli, Roberto Contieri
{"title":"Assessing the influence of smoking on inflammatory markers in bacillus Calmette Guérin response among bladder cancer patients: a novel machine-learning approach.","authors":"Matteo Ferro, Octavian S Tataru, Giuseppe Fallara, Cristian Fiori, Matteo Manfredi, Francesco Claps, Rodolfo Hurle, Nicolò M Buffi, Giovanni Lughezzani, Massimo Lazzeri, Achille Aveta, Savio D Pandolfo, Biagio Barone, Felice Crocetto, Pasquale Ditonno, Giuseppe Lucarelli, Francesco Lasorsa, Giuseppe Carrieri, Gian M Busetto, Ugo G Falagario, Francesco Del Giudice, Martina Maggi, Francesco Cantiello, Marco Borghesi, Carlo Terrone, Pierluigi Bove, Alessandro Antonelli, Alessandro Veccia, Andrea Mari, Stefano Luzzago, Raul Gherasim, Ciprian Todea-Moga, Andrea Minervini, Gennaro Musi, Francesco A Mistretta, Roberto Bianchi, Marco Tozzi, Francesco Soria, Paolo Gontero, Michele Marchioni, Letizia M Janello, Daniela Terracciano, Giorgio I Russo, Luigi Schips, Sisto Perdonà, Riccardo Autorino, Michele Catellani, Chiara Sighinolfi, Emanuele Montanari, Savino M DI Stasi, Francesco Porpiglia, Bernardo Rocco, Ottavio de Cobelli, Roberto Contieri","doi":"10.23736/S2724-6051.24.05876-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Approximately 70% of bladder cancer is diagnosed as non-muscle invasive (NMIBC) and inflammation is known to impact the oncological outcomes. Adjuvant intravesical BCG in intermediate/high risk can lower recurrence and progression. The efficacy of intravesical BCG can be impacted by smoking effects on systemic inflammation.</p><p><strong>Methods: </strong>Our retrospective, multicenter study with data from 1.313 NMIBC patients aimed to assess the impact of smoking and the systemic inflammatory status on BCG response in T1G3 bladder cancer, using a machine-learning CART based algorithm.</p><p><strong>Results: </strong>In a median of 50-month follow-up (IQR 41-75), 344 patients experienced progression to muscle invasive or metastatic disease and 65 died due to bladder cancer. A CART algorithm has been employed to stratify patients in three prognostic clusters using smoking status, LMR (lymphocytes to monocytes ratio), NLR (neutrophil-to-lymphocyte ratio) and PLR (platelet-to-lymphocyte ratio) as variables. Cox regression models revealed a 1.5-fold (HR 1.66, 95%, CI 1.20-2.29, P=0.002) and three-fold (HR 2.99, 95% CI 2.08-4.30, P<0.001) risk of progression, in intermediate and high risk NMIBC respectively, compared to the low-risk group. The model's concordance index was 0.66.</p><p><strong>Conclusions: </strong>Our study provides an insight into the influence of smoking on inflammatory markers and BCG response in NMIBC patients. Our machine-learning approach provides clinicians a valuable tool for risk stratification, treatment, and decision-making. Future research in larger prospective cohorts is required for validating these findings.</p>","PeriodicalId":53228,"journal":{"name":"Minerva Urology and Nephrology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerva Urology and Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23736/S2724-6051.24.05876-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Approximately 70% of bladder cancer is diagnosed as non-muscle invasive (NMIBC) and inflammation is known to impact the oncological outcomes. Adjuvant intravesical BCG in intermediate/high risk can lower recurrence and progression. The efficacy of intravesical BCG can be impacted by smoking effects on systemic inflammation.

Methods: Our retrospective, multicenter study with data from 1.313 NMIBC patients aimed to assess the impact of smoking and the systemic inflammatory status on BCG response in T1G3 bladder cancer, using a machine-learning CART based algorithm.

Results: In a median of 50-month follow-up (IQR 41-75), 344 patients experienced progression to muscle invasive or metastatic disease and 65 died due to bladder cancer. A CART algorithm has been employed to stratify patients in three prognostic clusters using smoking status, LMR (lymphocytes to monocytes ratio), NLR (neutrophil-to-lymphocyte ratio) and PLR (platelet-to-lymphocyte ratio) as variables. Cox regression models revealed a 1.5-fold (HR 1.66, 95%, CI 1.20-2.29, P=0.002) and three-fold (HR 2.99, 95% CI 2.08-4.30, P<0.001) risk of progression, in intermediate and high risk NMIBC respectively, compared to the low-risk group. The model's concordance index was 0.66.

Conclusions: Our study provides an insight into the influence of smoking on inflammatory markers and BCG response in NMIBC patients. Our machine-learning approach provides clinicians a valuable tool for risk stratification, treatment, and decision-making. Future research in larger prospective cohorts is required for validating these findings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估吸烟对膀胱癌患者中卡介苗芽孢杆菌(bacillus Calmette gusamrin)反应炎症标志物的影响:一种新的机器学习方法。
背景:大约70%的膀胱癌被诊断为非肌肉浸润性(NMIBC),已知炎症会影响肿瘤预后。中/高危患者辅助膀胱内卡介苗可降低复发和进展。吸烟对全身炎症的影响可影响膀胱内卡介苗的疗效。方法:采用基于机器学习CART的算法,对来自1.313例NMIBC患者的数据进行回顾性、多中心研究,旨在评估吸烟和全身炎症状态对T1G3膀胱癌患者卡介苗应答的影响。结果:在平均50个月的随访(IQR 41-75)中,344名患者进展为肌肉侵袭性或转移性疾病,65名患者死于膀胱癌。采用CART算法,以吸烟状况、LMR(淋巴细胞与单核细胞比率)、NLR(中性粒细胞与淋巴细胞比率)和PLR(血小板与淋巴细胞比率)为变量,将患者分为三个预后组。Cox回归模型显示了1.5倍(HR 1.66, 95%, CI 1.20-2.29, P=0.002)和3倍(HR 2.99, 95% CI 2.08-4.30, P)。结论:我们的研究提供了吸烟对NMIBC患者炎症标志物和卡介苗反应的影响。我们的机器学习方法为临床医生提供了风险分层、治疗和决策的宝贵工具。需要在更大的前瞻性队列中进行进一步的研究来验证这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Minerva Urology and Nephrology
Minerva Urology and Nephrology UROLOGY & NEPHROLOGY-
CiteScore
8.50
自引率
32.70%
发文量
237
期刊最新文献
Different clusters in patients with lupus podocytopathy identified by clinical-pathological characteristics. Effectiveness of patient education on adherence to treatment regimen and quality of life in hemodialysis patients: a systematic review and meta-analysis. A comparison on the efficiency and safety between two morcellators for laser enucleation of the prostate: Piranha versus Cyber Blade. A randomized controlled trial. The "gender-gap" problem of artificial urinary sphincter: the future is robotic. Aquablation vs. holmium laser enucleation of the prostate for benign prostatic hyperplasia: a 150-patients prospective comparative multicenter study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1