Yangfan Wang, Ping Ni, Marc Sturrock, Qifan Zeng, Bo Wang, Zhenmin Bao, Jingjie Hu
{"title":"Deep learning for genomic selection of aquatic animals.","authors":"Yangfan Wang, Ping Ni, Marc Sturrock, Qifan Zeng, Bo Wang, Zhenmin Bao, Jingjie Hu","doi":"10.1007/s42995-024-00252-y","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic progress than pedigree-based methods. The genetic analysis of complex traits in GS does not escape the current excitement around artificial intelligence, including a renewed interest in deep learning (DL), such as deep neural networks (DNNs), convolutional neural networks (CNNs), and autoencoders. This article reviews the current status and potential of DL applications in phenotyping, genotyping and genomic estimated breeding value (GEBV) prediction of GS. It can be seen from this article that CNNs obtain phenotype data of aquatic animals efficiently, and without injury; DNNs as single nucleotide polymorphism (SNP) variant callers are critical to have shown higher accuracy in assessments of genotyping for the next-generation sequencing (NGS); autoencoder-based genotype imputation approaches are capable of highly accurate genotype imputation by encoding complex genotype relationships in easily portable inference models; sparse DNNs capture nonlinear relationships among genes to improve the accuracy of GEBV prediction for aquatic animals. Furthermore, future directions of DL in aquaculture are also discussed, which should expand the application to more aquaculture species. We believe that DL will be applied increasingly to molecular breeding of aquatic animals in the future.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-024-00252-y.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"6 4","pages":"631-650"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-024-00252-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genomic selection (GS) applied to the breeding of aquatic animals has been of great interest in recent years due to its higher accuracy and faster genetic progress than pedigree-based methods. The genetic analysis of complex traits in GS does not escape the current excitement around artificial intelligence, including a renewed interest in deep learning (DL), such as deep neural networks (DNNs), convolutional neural networks (CNNs), and autoencoders. This article reviews the current status and potential of DL applications in phenotyping, genotyping and genomic estimated breeding value (GEBV) prediction of GS. It can be seen from this article that CNNs obtain phenotype data of aquatic animals efficiently, and without injury; DNNs as single nucleotide polymorphism (SNP) variant callers are critical to have shown higher accuracy in assessments of genotyping for the next-generation sequencing (NGS); autoencoder-based genotype imputation approaches are capable of highly accurate genotype imputation by encoding complex genotype relationships in easily portable inference models; sparse DNNs capture nonlinear relationships among genes to improve the accuracy of GEBV prediction for aquatic animals. Furthermore, future directions of DL in aquaculture are also discussed, which should expand the application to more aquaculture species. We believe that DL will be applied increasingly to molecular breeding of aquatic animals in the future.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-024-00252-y.
期刊介绍:
Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats.
The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.