Pax proteins mediate segment-specific functions in proximal tubule survival and response to ischemic injury.

Madison C McElliott, Asha C Telang, Jenna T Ference-Salo, Anas Al-Suraimi, Mahboob Chowdhury, Edgar A Otto, Abdul Soofi, Gregory R Dressler, Jeffrey A Beamish
{"title":"Pax proteins mediate segment-specific functions in proximal tubule survival and response to ischemic injury.","authors":"Madison C McElliott, Asha C Telang, Jenna T Ference-Salo, Anas Al-Suraimi, Mahboob Chowdhury, Edgar A Otto, Abdul Soofi, Gregory R Dressler, Jeffrey A Beamish","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Acute kidney injury (AKI) is a common clinical syndrome with few effective treatments. Though the kidney can regenerate after injury, the molecular mechanisms regulating this process remain poorly understood. Pax2 and Pax8 are DNA-binding transcription factors that are upregulated after kidney injury. However, their function during the response to AKI remains incompletely defined. In this report, we develop a model of ischemic AKI in female mice with mosaic nephrons comprised of both Pax2 and Pax8 mutant and wildtype proximal tubule cells with fixed lineages. Each population therefore experiences identical physiological and injury conditions in the same animal. In these female mice, we show that before injury the S1 and S2 segments of the proximal tubule are depleted of Pax-mutant cells while mutant cells are preserved in the S3 segment. Retained S3 Pax-mutant cells develop a preconditioned phenotype that overlaps with gene expression signatures in AKI. In response to ischemic AKI, which most strongly damages the S3 proximal tubule, injury-resistant mutant S3 cells are more likely to proliferate. Pax-mutant cells then preferentially repopulate the S3 segment of the proximal tubule. Our results indicate that Pax2 and Pax8 are not required for regeneration of the S3 proximal tubule after ischemic AKI. Together, our findings indicate that Pax proteins play a critical role determining the segment-specific proximal tubule gene expression patterns that dictate vulnerability to ischemic injury.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"None"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acute kidney injury (AKI) is a common clinical syndrome with few effective treatments. Though the kidney can regenerate after injury, the molecular mechanisms regulating this process remain poorly understood. Pax2 and Pax8 are DNA-binding transcription factors that are upregulated after kidney injury. However, their function during the response to AKI remains incompletely defined. In this report, we develop a model of ischemic AKI in female mice with mosaic nephrons comprised of both Pax2 and Pax8 mutant and wildtype proximal tubule cells with fixed lineages. Each population therefore experiences identical physiological and injury conditions in the same animal. In these female mice, we show that before injury the S1 and S2 segments of the proximal tubule are depleted of Pax-mutant cells while mutant cells are preserved in the S3 segment. Retained S3 Pax-mutant cells develop a preconditioned phenotype that overlaps with gene expression signatures in AKI. In response to ischemic AKI, which most strongly damages the S3 proximal tubule, injury-resistant mutant S3 cells are more likely to proliferate. Pax-mutant cells then preferentially repopulate the S3 segment of the proximal tubule. Our results indicate that Pax2 and Pax8 are not required for regeneration of the S3 proximal tubule after ischemic AKI. Together, our findings indicate that Pax proteins play a critical role determining the segment-specific proximal tubule gene expression patterns that dictate vulnerability to ischemic injury.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sex differences in the adrenal circadian clock: a role for BMAL1 in the regulation of urinary aldosterone excretion and renal electrolyte balance in mice. Phosphoproteomic response to epidermal growth factor in native rat inner medullary collecting duct. Western diet exacerbates a murine model of Balkan nephropathy. Intestinal Barrier Function Declines During Polycystic Kidney Disease Progression. Remote organ cancer induces kidney injury, inflammation, and fibrosis and adversely alters renal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1