Res@LDH: A Novel Nanohybrid Therapeutic for Ischemia-Reperfusion Injury with Dual Reactive Oxygen Species Scavenging Efficiency.

IF 8.1 Q1 ENGINEERING, BIOMEDICAL Biomaterials research Pub Date : 2024-12-03 eCollection Date: 2024-01-01 DOI:10.34133/bmr.0108
Min Liu, Siyuan Liu, Yafan Bai, Mingru Zhang, Duo Zhang, Ruijin Sun, Guyan Wang, Yulong Ma
{"title":"Res@LDH: A Novel Nanohybrid Therapeutic for Ischemia-Reperfusion Injury with Dual Reactive Oxygen Species Scavenging Efficiency.","authors":"Min Liu, Siyuan Liu, Yafan Bai, Mingru Zhang, Duo Zhang, Ruijin Sun, Guyan Wang, Yulong Ma","doi":"10.34133/bmr.0108","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke poses a global health challenge, necessitating effective therapeutic interventions given the limited time window for thrombolytic therapy. Here, we present Res@LDH, a novel nanohybrid therapeutic agent boasting a dual reactive oxygen species scavenging efficiency of approximately 90%. Comprising Ge-containing layered double hydroxide nanosheets (Ge-LDH) as a drug nanocarrier and resveratrol as a neuroprotective agent, Res@LDH demonstrates enhanced permeability across the blood-brain barrier, ensuring high biocompatibility and stability. We explored the potential of Res@LDH in mitigating oxidative stress injury induced by middle cerebral artery occlusion and reperfusion in mice, as well as H<sub>2</sub>O<sub>2</sub>-induced cytotoxicity in HT22 cells. Our experiments unveil Res@LDH's capacity to ameliorate neurological deficits, reduce the infarction volume, mitigate blood-brain barrier disruption, exhibit a robust antioxidant activity, and dampen the release of proinflammatory cytokines. Moreover, Res@LDH treatment markedly attenuates microglial and astrocytic activation. Leveraging a pioneering synthetic approach harnessing Ge-LDH and resveratrol, Res@LDH emerges as a promising strategy for addressing ischemia-reperfusion injury, offering a concise solution to current therapeutic challenges.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0108"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ischemic stroke poses a global health challenge, necessitating effective therapeutic interventions given the limited time window for thrombolytic therapy. Here, we present Res@LDH, a novel nanohybrid therapeutic agent boasting a dual reactive oxygen species scavenging efficiency of approximately 90%. Comprising Ge-containing layered double hydroxide nanosheets (Ge-LDH) as a drug nanocarrier and resveratrol as a neuroprotective agent, Res@LDH demonstrates enhanced permeability across the blood-brain barrier, ensuring high biocompatibility and stability. We explored the potential of Res@LDH in mitigating oxidative stress injury induced by middle cerebral artery occlusion and reperfusion in mice, as well as H2O2-induced cytotoxicity in HT22 cells. Our experiments unveil Res@LDH's capacity to ameliorate neurological deficits, reduce the infarction volume, mitigate blood-brain barrier disruption, exhibit a robust antioxidant activity, and dampen the release of proinflammatory cytokines. Moreover, Res@LDH treatment markedly attenuates microglial and astrocytic activation. Leveraging a pioneering synthetic approach harnessing Ge-LDH and resveratrol, Res@LDH emerges as a promising strategy for addressing ischemia-reperfusion injury, offering a concise solution to current therapeutic challenges.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing the Intradermal Delivery of Hair Follicle Dermal Papilla Cell Spheroids for Hair Follicle Regeneration in Nude Mice. Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis. A Novel Cell-Penetrating Peptide-Vascular Endothelial Growth Factor Small Interfering Ribonucleic Acid Complex That Mediates the Inhibition of Angiogenesis by Human Umbilical Vein Endothelial Cells and in an Ex Vivo Mouse Aorta Ring Model. Functionalized Periosteum-Derived Microsphere-Hydrogel with Sequential Release of E7 Short Peptide/miR217 for Large Bone Defect Repairing. A Magnetic-Responsive Biomimetic Nanosystem Coated with Glioma Stem Cell Membranes Effectively Targets and Eliminates Malignant Gliomas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1