Discovering geroprotectors through the explainable artificial intelligence-based platform AgeXtend

IF 17 Q1 CELL BIOLOGY Nature aging Pub Date : 2024-12-03 DOI:10.1038/s43587-024-00763-4
Sakshi Arora, Aayushi Mittal, Subhadeep Duari, Sonam Chauhan, Nilesh Kumar Dixit, Sanjay Kumar Mohanty, Arushi Sharma, Saveena Solanki, Anmol Kumar Sharma, Vishakha Gautam, Pushpendra Singh Gahlot, Shiva Satija, Jeet Nanshi, Nikita Kapoor, Lavanya CB, Debarka Sengupta, Parul Mehrotra, Tarini Shankar Ghosh, Gaurav Ahuja
{"title":"Discovering geroprotectors through the explainable artificial intelligence-based platform AgeXtend","authors":"Sakshi Arora, Aayushi Mittal, Subhadeep Duari, Sonam Chauhan, Nilesh Kumar Dixit, Sanjay Kumar Mohanty, Arushi Sharma, Saveena Solanki, Anmol Kumar Sharma, Vishakha Gautam, Pushpendra Singh Gahlot, Shiva Satija, Jeet Nanshi, Nikita Kapoor, Lavanya CB, Debarka Sengupta, Parul Mehrotra, Tarini Shankar Ghosh, Gaurav Ahuja","doi":"10.1038/s43587-024-00763-4","DOIUrl":null,"url":null,"abstract":"Aging involves metabolic changes that lead to reduced cellular fitness, yet the role of many metabolites in aging is unclear. Understanding the mechanisms of known geroprotective molecules reveals insights into metabolic networks regulating aging and aids in identifying additional geroprotectors. Here we present AgeXtend, an artificial intelligence (AI)-based multimodal geroprotector prediction platform that leverages bioactivity data of known geroprotectors. AgeXtend encompasses modules that predict geroprotective potential, assess toxicity and identify target proteins and potential mechanisms. We found that AgeXtend accurately identified the pro-longevity effects of known geroprotectors excluded from training data, such as metformin and taurine. Using AgeXtend, we screened ~1.1 billion compounds and identified numerous potential geroprotectors, which we validated using yeast and Caenorhabditis elegans lifespan assays, as well as exploring microbiome-derived metabolites. Finally, we evaluated endogenous metabolites predicted as senomodulators using senescence assays in human fibroblasts, highlighting AgeXtend’s potential to reveal unidentified geroprotectors and provide insights into aging mechanisms. Arora et al. present AgeXtend, an explainable artificial intelligence-based platform that leverages bioactivity data to predict geroprotectors. They validate potential geroprotectors identified using this platform in yeast, worm and senescence assays.","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":"5 1","pages":"144-161"},"PeriodicalIF":17.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43587-024-00763-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging involves metabolic changes that lead to reduced cellular fitness, yet the role of many metabolites in aging is unclear. Understanding the mechanisms of known geroprotective molecules reveals insights into metabolic networks regulating aging and aids in identifying additional geroprotectors. Here we present AgeXtend, an artificial intelligence (AI)-based multimodal geroprotector prediction platform that leverages bioactivity data of known geroprotectors. AgeXtend encompasses modules that predict geroprotective potential, assess toxicity and identify target proteins and potential mechanisms. We found that AgeXtend accurately identified the pro-longevity effects of known geroprotectors excluded from training data, such as metformin and taurine. Using AgeXtend, we screened ~1.1 billion compounds and identified numerous potential geroprotectors, which we validated using yeast and Caenorhabditis elegans lifespan assays, as well as exploring microbiome-derived metabolites. Finally, we evaluated endogenous metabolites predicted as senomodulators using senescence assays in human fibroblasts, highlighting AgeXtend’s potential to reveal unidentified geroprotectors and provide insights into aging mechanisms. Arora et al. present AgeXtend, an explainable artificial intelligence-based platform that leverages bioactivity data to predict geroprotectors. They validate potential geroprotectors identified using this platform in yeast, worm and senescence assays.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过可解释的人工智能平台AgeXtend发现老年保护器。
衰老涉及导致细胞适应性降低的代谢变化,但许多代谢物在衰老中的作用尚不清楚。了解已知的老年保护分子的机制揭示了对调节衰老的代谢网络的见解,并有助于确定其他老年保护分子。在这里,我们提出AgeXtend,一个基于人工智能(AI)的多模式老年保护剂预测平台,利用已知老年保护剂的生物活性数据。AgeXtend包含预测老年保护潜力、评估毒性、识别靶蛋白和潜在机制的模块。我们发现AgeXtend准确地识别了排除在训练数据之外的已知老年保护剂的长寿作用,如二甲双胍和牛磺酸。使用AgeXtend,我们筛选了约11亿个化合物,并确定了许多潜在的老年保护剂,我们使用酵母和秀丽隐杆线虫的寿命测定以及探索微生物衍生的代谢物来验证这些化合物。最后,我们利用人类成纤维细胞的衰老试验评估了内源性代谢物作为衰老调节剂的预测,强调AgeXtend有潜力揭示未知的衰老保护因子,并为衰老机制提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
0
期刊最新文献
Mitochondria-enriched hematopoietic stem cells exhibit elevated self-renewal capabilities, thriving within the context of aged bone marrow. Single-cell immune aging clocks reveal inter-individual heterogeneity during infection and vaccination. The complex interplay between aging and cancer. Single-cell transcriptomic atlas of the human testis across the reproductive lifespan. Restoring the primary cilia-autophagy axis in neurons to foster cognitive resilience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1