Design-Agnostic Distributed Timing Fault Injection Monitor With End-to-End Design Automation

IF 4.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Solid-state Circuits Pub Date : 2024-12-04 DOI:10.1109/JSSC.2024.3504546
Yan He;Yumin Su;Kaiyuan Yang
{"title":"Design-Agnostic Distributed Timing Fault Injection Monitor With End-to-End Design Automation","authors":"Yan He;Yumin Su;Kaiyuan Yang","doi":"10.1109/JSSC.2024.3504546","DOIUrl":null,"url":null,"abstract":"Fault injection attacks (FIAs) induce hardware failures in circuits and exploit these faults to compromise the security of the system. It has been demonstrated that FIAs can bypass system security mechanisms, cause faulty outputs, and gain access to secret information. Certain types of FIAs can be mounted with little effort by tampering with clock signals and/or the chip’s operating conditions. To mitigate such low-cost, yet powerful attacks, we propose a fully synthesizable and distributable in situ fault injection monitor that employs a delay locked loop (DLL) to track the pulsewidth of the clock. We further develop a fully automated design framework to optimize and implement the FIA monitors at any process node. Our design is fabricated and verified in 65-nm CMOS technology with a small footprint of <inline-formula> <tex-math>$1500~{\\mu }$ </tex-math></inline-formula>m2. It can lock to clock frequencies from 2 MHz to 1.26 GHz while detecting all 12 types of possible clock glitches, as well as timing FIA injections via the supply voltage, electromagnetic (EM) signals, and chip temperature.","PeriodicalId":13129,"journal":{"name":"IEEE Journal of Solid-state Circuits","volume":"60 1","pages":"146-157"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Solid-state Circuits","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10777000/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Fault injection attacks (FIAs) induce hardware failures in circuits and exploit these faults to compromise the security of the system. It has been demonstrated that FIAs can bypass system security mechanisms, cause faulty outputs, and gain access to secret information. Certain types of FIAs can be mounted with little effort by tampering with clock signals and/or the chip’s operating conditions. To mitigate such low-cost, yet powerful attacks, we propose a fully synthesizable and distributable in situ fault injection monitor that employs a delay locked loop (DLL) to track the pulsewidth of the clock. We further develop a fully automated design framework to optimize and implement the FIA monitors at any process node. Our design is fabricated and verified in 65-nm CMOS technology with a small footprint of $1500~{\mu }$ m2. It can lock to clock frequencies from 2 MHz to 1.26 GHz while detecting all 12 types of possible clock glitches, as well as timing FIA injections via the supply voltage, electromagnetic (EM) signals, and chip temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有端到端设计自动化的设计不可知分布式定时故障注入监视器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Solid-state Circuits
IEEE Journal of Solid-state Circuits 工程技术-工程:电子与电气
CiteScore
11.00
自引率
20.40%
发文量
351
审稿时长
3-6 weeks
期刊介绍: The IEEE Journal of Solid-State Circuits publishes papers each month in the broad area of solid-state circuits with particular emphasis on transistor-level design of integrated circuits. It also provides coverage of topics such as circuits modeling, technology, systems design, layout, and testing that relate directly to IC design. Integrated circuits and VLSI are of principal interest; material related to discrete circuit design is seldom published. Experimental verification is strongly encouraged.
期刊最新文献
A 7–20 GHz Ultra-High-Linearity Passive Mixer in 45 nm CMOS SOI Digital In-Memory Compute for Machine Learning Applications With Input and Model Security A Monolithic 5.7 A/mm2 91% Peak Efficiency Scalable Multistage Modular Switched Capacitor Voltage Regulator for Base Die Vertical Power Delivery in 3D-ICs An 800-MHz 8.17-TOPS/W 0.63-TOPS/mm2 Memory-Utilization-Aware CNN Accelerator Featuring a Memory Stationary Dataflow An Energy-Efficient POSIT Compute-in-Memory Macro for High-Accuracy AI Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1