Randomly pivoted Cholesky: Practical approximation of a kernel matrix with few entry evaluations

IF 3.1 1区 数学 Q1 MATHEMATICS Communications on Pure and Applied Mathematics Pub Date : 2024-12-04 DOI:10.1002/cpa.22234
Yifan Chen, Ethan N. Epperly, Joel A. Tropp, Robert J. Webber
{"title":"Randomly pivoted Cholesky: Practical approximation of a kernel matrix with few entry evaluations","authors":"Yifan Chen, Ethan N. Epperly, Joel A. Tropp, Robert J. Webber","doi":"10.1002/cpa.22234","DOIUrl":null,"url":null,"abstract":"The randomly pivoted Cholesky algorithm (<jats:sc>RPCholesky</jats:sc>) computes a factorized rank‐ approximation of an positive‐semidefinite (psd) matrix. <jats:sc>RPCholesky</jats:sc> requires only entry evaluations and additional arithmetic operations, and it can be implemented with just a few lines of code. The method is particularly useful for approximating a kernel matrix. This paper offers a thorough new investigation of the empirical and theoretical behavior of this fundamental algorithm. For matrix approximation problems that arise in scientific machine learning, experiments show that <jats:sc>RPCholesky</jats:sc> matches or beats the performance of alternative algorithms. Moreover, <jats:sc>RPCholesky</jats:sc> provably returns low‐rank approximations that are nearly optimal. The simplicity, effectiveness, and robustness of <jats:sc>RPCholesky</jats:sc> strongly support its use in scientific computing and machine learning applications.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"27 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/cpa.22234","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The randomly pivoted Cholesky algorithm (RPCholesky) computes a factorized rank‐ approximation of an positive‐semidefinite (psd) matrix. RPCholesky requires only entry evaluations and additional arithmetic operations, and it can be implemented with just a few lines of code. The method is particularly useful for approximating a kernel matrix. This paper offers a thorough new investigation of the empirical and theoretical behavior of this fundamental algorithm. For matrix approximation problems that arise in scientific machine learning, experiments show that RPCholesky matches or beats the performance of alternative algorithms. Moreover, RPCholesky provably returns low‐rank approximations that are nearly optimal. The simplicity, effectiveness, and robustness of RPCholesky strongly support its use in scientific computing and machine learning applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机中心choolesky:核矩阵的实用逼近
随机枢轴Cholesky算法(RPCholesky)计算正半定(psd)矩阵的因式秩近似。RPCholesky只需要条目求值和额外的算术运算,并且只需几行代码就可以实现。这种方法对于近似核矩阵特别有用。本文对这一基本算法的经验和理论行为进行了全面的新研究。对于科学机器学习中出现的矩阵近似问题,实验表明RPCholesky匹配或优于其他算法的性能。此外,RPCholesky可证明地返回接近最优的低秩近似。RPCholesky的简单性、有效性和健壮性有力地支持了它在科学计算和机器学习应用程序中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
期刊最新文献
Phase transition of parabolic Ginzburg–Landau equation with potentials of high‐dimensional wells Polynomial lower bound on the effective resistance for the one‐dimensional critical long‐range percolation Issue Information ‐ TOC A flow‐type scaling limit for random growth with memory A dual‐space multilevel kernel‐splitting framework for discrete and continuous convolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1