Evaluating sustainable water management strategies using TOPSIS and fuzzy TOPSIS methods

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES Applied Water Science Pub Date : 2024-12-05 DOI:10.1007/s13201-024-02336-7
Fang Han, Rami N. Alkhawaji, M. Mehdi Shafieezadeh
{"title":"Evaluating sustainable water management strategies using TOPSIS and fuzzy TOPSIS methods","authors":"Fang Han,&nbsp;Rami N. Alkhawaji,&nbsp;M. Mehdi Shafieezadeh","doi":"10.1007/s13201-024-02336-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates sustainable water management strategies using TOPSIS and Fuzzy TOPSIS (FTOPSIS) to address global water scarcity by comparing rainwater harvesting, water recycling, and desalination across five criteria: water efficiency, cost-effectiveness, environmental impact, social equity, and technological feasibility. The results show Rainwater Harvesting as the most balanced option with a relative closeness value of <span>\\({C}_{i}^{+}\\)</span>=0.640, excelling in social equity and environmental sustainability. Water Recycling ranks closely behind (<span>\\({C}_{i}^{+}\\)</span>=0.608), highlighting its adaptability and technological feasibility, while Desalination, though highly efficient, is hindered by lower cost-effectiveness (<span>\\({C}_{i}^{+}\\)</span>=0.578). By integrating TOPSIS and FTOPSIS, the study addresses uncertainties and subjective criteria, providing a robust multi-dimensional assessment framework for resource management. This methodology aids decision-makers in identifying strategies that align with sustainable development goals and adapt to regional priorities. Future work can expand this framework to include stakeholder engagement and policy factors, enhancing water management strategies for resilient, long-term solutions.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-024-02336-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-024-02336-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates sustainable water management strategies using TOPSIS and Fuzzy TOPSIS (FTOPSIS) to address global water scarcity by comparing rainwater harvesting, water recycling, and desalination across five criteria: water efficiency, cost-effectiveness, environmental impact, social equity, and technological feasibility. The results show Rainwater Harvesting as the most balanced option with a relative closeness value of \({C}_{i}^{+}\)=0.640, excelling in social equity and environmental sustainability. Water Recycling ranks closely behind (\({C}_{i}^{+}\)=0.608), highlighting its adaptability and technological feasibility, while Desalination, though highly efficient, is hindered by lower cost-effectiveness (\({C}_{i}^{+}\)=0.578). By integrating TOPSIS and FTOPSIS, the study addresses uncertainties and subjective criteria, providing a robust multi-dimensional assessment framework for resource management. This methodology aids decision-makers in identifying strategies that align with sustainable development goals and adapt to regional priorities. Future work can expand this framework to include stakeholder engagement and policy factors, enhancing water management strategies for resilient, long-term solutions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
期刊最新文献
Effectively eliminating lead and cadmium from industrial wastewater using a biowaste-based sorbent Water quality and eutrophication status of the Zarivar Wetland (Iran) Visible light photocatalytic degradation of water-soluble organic pollutants in aqueous solution by thulium copper oxide nanostructures: sonochemical synthesis, characterization, optimization of conditions, and mechanisms Dynamic coupling of qualitative–quantitative models for operation of water resources based on environmental criteria Enhancing water productivity of solar still using thermal energy storage material and flat plate solar collector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1