Protocol-Based Sampled-Data Control for T-S Fuzzy Reaction–Diffusion Neural Networks

IF 11.9 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Fuzzy Systems Pub Date : 2024-12-04 DOI:10.1109/TFUZZ.2024.3511120
Jun Cheng;Na Liu;Leszek Rutkowski;Jinde Cao;Huaicheng Yan
{"title":"Protocol-Based Sampled-Data Control for T-S Fuzzy Reaction–Diffusion Neural Networks","authors":"Jun Cheng;Na Liu;Leszek Rutkowski;Jinde Cao;Huaicheng Yan","doi":"10.1109/TFUZZ.2024.3511120","DOIUrl":null,"url":null,"abstract":"This study explores the protocol-based sampled-data control for T-S fuzzy reaction–diffusion neural networks (RDNNs) with nonhomogeneous sojourn probabilities (NSPs). By incorporating a deterministic switching signal, a new framework of NSPs is developed to characterize the random behaviors of fuzzy RDNNs. Unlike previous studies, this work introduces multiasynchronous switching among fuzzy RDNNs, triggering conditions, and controllers using dynamic asynchrony models, effectively capturing mode transitions through NSPs and detection probabilities. An improved adaptive event-triggered protocol is created by integrating fuzzy rules and detection probability information. Moving beyond traditional time-domain sampled-data control strategies, a space–time sampled-data control approach is proposed to significantly reduce communication load. Benefiting from Lyapunov theory, criteria are attained for ensuring the mean-square exponential stability of the systems under consideration. Ultimately, the proposed space–time sampled-data control strategy is validated through a simulation example, highlighting its effectiveness and superiority.","PeriodicalId":13212,"journal":{"name":"IEEE Transactions on Fuzzy Systems","volume":"33 4","pages":"1168-1177"},"PeriodicalIF":11.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777521/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the protocol-based sampled-data control for T-S fuzzy reaction–diffusion neural networks (RDNNs) with nonhomogeneous sojourn probabilities (NSPs). By incorporating a deterministic switching signal, a new framework of NSPs is developed to characterize the random behaviors of fuzzy RDNNs. Unlike previous studies, this work introduces multiasynchronous switching among fuzzy RDNNs, triggering conditions, and controllers using dynamic asynchrony models, effectively capturing mode transitions through NSPs and detection probabilities. An improved adaptive event-triggered protocol is created by integrating fuzzy rules and detection probability information. Moving beyond traditional time-domain sampled-data control strategies, a space–time sampled-data control approach is proposed to significantly reduce communication load. Benefiting from Lyapunov theory, criteria are attained for ensuring the mean-square exponential stability of the systems under consideration. Ultimately, the proposed space–time sampled-data control strategy is validated through a simulation example, highlighting its effectiveness and superiority.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于协议的T-S模糊反应-扩散神经网络采样数据控制
研究了具有非齐次逗留概率(NSPs)的T-S模糊反应-扩散神经网络(RDNNs)基于协议的采样数据控制。通过引入确定性开关信号,提出了一种新的神经网络框架来表征模糊rdnn的随机行为。与以往的研究不同,这项工作引入了模糊rdnn之间的多异步切换、触发条件和使用动态异步模型的控制器,通过nsp和检测概率有效地捕获模式转换。将模糊规则和检测概率信息相结合,建立了一种改进的自适应事件触发协议。在传统时域采样数据控制策略的基础上,提出了一种时空采样数据控制方法,以显著降低通信负荷。利用李雅普诺夫理论,得到了保证系统均方指数稳定性的判据。最后,通过仿真实例验证了所提出的时空采样数据控制策略的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Fuzzy Systems
IEEE Transactions on Fuzzy Systems 工程技术-工程:电子与电气
CiteScore
20.50
自引率
13.40%
发文量
517
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Fuzzy Systems is a scholarly journal that focuses on the theory, design, and application of fuzzy systems. It aims to publish high-quality technical papers that contribute significant technical knowledge and exploratory developments in the field of fuzzy systems. The journal particularly emphasizes engineering systems and scientific applications. In addition to research articles, the Transactions also includes a letters section featuring current information, comments, and rebuttals related to published papers.
期刊最新文献
Information Granule-Based Time Series Prediction via Synergizing Multiscale and Multitype Information Granulations A Fuzzy Large TabNet-Based Model and its Distillation Learning for Noisy-Labeled Data Via Consequent Additive Decomposition Efficient Fuzzy Model Predictive Tracking Control of Nonlinear Systems: A Membership Function Approximation Approach Vision-Language-Action Model-Based Event-Triggered Admittance Control of a Mobile Manipulator for Power Substation Live-Maintaining Automatic programming via large language models with population self-evolution for dynamic fuzzy job shop scheduling problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1