Zhouzhou Zhu, Xiangfu Hu, Ying Wei, Jiahao Pan, Zhenda Lu
{"title":"Probing Single-Particle Electrocatalytic Stability: Electrogenerated Chemiluminescence Imaging of Nanoparticle Array","authors":"Zhouzhou Zhu, Xiangfu Hu, Ying Wei, Jiahao Pan, Zhenda Lu","doi":"10.1021/acs.jpclett.4c03226","DOIUrl":null,"url":null,"abstract":"Understanding the stability of single nanoparticles is crucial for optimizing their performance in various applications, including catalysis. In this study, we employed electrochemiluminescence (ECL) imaging to investigate the temporal stability of individual Au and Pt nanoparticles within precisely engineered arrays. Our results reveal significant differences in the stability of Au and Pt NPs. While both exhibit initial decay due to diffusion limitations, Au NPs undergo more rapid degradation, attributed to surface oxidation and detachment. In contrast, Pt NPs demonstrate much better stability with little surface oxidation. This study provides valuable insights into the fundamental behavior of single-NP electrocatalysis and highlights the potential of ECL imaging as a powerful tool for unraveling the complex dynamics of nanoscale systems.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"6 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03226","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the stability of single nanoparticles is crucial for optimizing their performance in various applications, including catalysis. In this study, we employed electrochemiluminescence (ECL) imaging to investigate the temporal stability of individual Au and Pt nanoparticles within precisely engineered arrays. Our results reveal significant differences in the stability of Au and Pt NPs. While both exhibit initial decay due to diffusion limitations, Au NPs undergo more rapid degradation, attributed to surface oxidation and detachment. In contrast, Pt NPs demonstrate much better stability with little surface oxidation. This study provides valuable insights into the fundamental behavior of single-NP electrocatalysis and highlights the potential of ECL imaging as a powerful tool for unraveling the complex dynamics of nanoscale systems.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.