{"title":"Autodegradable Polymers: Complete Degradation without Any Trigger, Tunable Performance, and Biomedical Applications","authors":"Shuohong Chen, Chengjian Zhang, Xinghong Zhang","doi":"10.1021/jacs.4c14077","DOIUrl":null,"url":null,"abstract":"Degradable polymers are an emerging research interest. The innovation of new degradable polymers for biomedical applications is challenging due to strict demands including nontoxicity of polymers and degraded products, complete degradation to avoid polymer residues in the body, and other suitable properties. Here, we demonstrate a series of degradable polymers for sustained-release drug applications synthesized by the alternating copolymerization of cyclic anhydrides and Schiff bases. In addition to common feedstocks, the copolymerization is versatile and catalyst-free, affording polymers incorporating cyclic topologies and in-chain ester and peptoid groups. Particularly, the polymers exhibit self- and autodegradation without any trigger, which is distinct from remaining degradation mechanisms. The degradation performance is widely regulated by the polymer structure and external temperature, resulting in complete degradation from a few hours to several months. Owing to their unique properties, the polymers are approved for biomedical applications, as revealed soundly through cell viability assay, <i>in vitro</i> and <i>in vivo</i> drug release.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"32 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14077","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Degradable polymers are an emerging research interest. The innovation of new degradable polymers for biomedical applications is challenging due to strict demands including nontoxicity of polymers and degraded products, complete degradation to avoid polymer residues in the body, and other suitable properties. Here, we demonstrate a series of degradable polymers for sustained-release drug applications synthesized by the alternating copolymerization of cyclic anhydrides and Schiff bases. In addition to common feedstocks, the copolymerization is versatile and catalyst-free, affording polymers incorporating cyclic topologies and in-chain ester and peptoid groups. Particularly, the polymers exhibit self- and autodegradation without any trigger, which is distinct from remaining degradation mechanisms. The degradation performance is widely regulated by the polymer structure and external temperature, resulting in complete degradation from a few hours to several months. Owing to their unique properties, the polymers are approved for biomedical applications, as revealed soundly through cell viability assay, in vitro and in vivo drug release.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.