Development and Validation of a UHPLC-MS/MS Method for the Simultaneous Quantification of Candesartan and Bisoprolol Together with Other 16 Antihypertensive Drugs in Plasma Samples
Alice Palermiti, Amedeo De Nicolò, Alessandra Manca, Miriam Antonucci, Jacopo Mula, Martina Billi, Jessica Cusato, Alessandro Carta, Marco Pappaccogli, Lara Ponsa, Chiara Fasano, Francesco Giuseppe De Rosa, Franco Rabbia, Franco Veglio, Antonio D’Avolio
{"title":"Development and Validation of a UHPLC-MS/MS Method for the Simultaneous Quantification of Candesartan and Bisoprolol Together with Other 16 Antihypertensive Drugs in Plasma Samples","authors":"Alice Palermiti, Amedeo De Nicolò, Alessandra Manca, Miriam Antonucci, Jacopo Mula, Martina Billi, Jessica Cusato, Alessandro Carta, Marco Pappaccogli, Lara Ponsa, Chiara Fasano, Francesco Giuseppe De Rosa, Franco Rabbia, Franco Veglio, Antonio D’Avolio","doi":"10.1021/acs.jmedchem.4c02045","DOIUrl":null,"url":null,"abstract":"Antihypertensive pharmacological therapy is often characterized by a coadministration of different classes of drugs. Therefore, analytical methods allowing the simultaneous quantification of many drugs are needed for therapeutic drug monitoring (TDM) purposes in this context. In particular, TDM represents a useful tool to discriminate poor adherence from real cases of resistant hypertension. For this reason, the aim of this study is to validate, following the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) guidelines, an ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) method for the simultaneous quantification of 18 antihypertensive drugs in human plasma. A LX-50 coupled with a QSight 220 UHPLC-MS/MS system with electrospray ionization and multiple reaction monitoring mode was used, after a binary gradient separation (13 min) on a reverse-phase Acquity UPLC HSS T3 [1.8 μm, 2.1 mm × 150 mm] column. Method validation showed a stable and acceptable matrix effect, recovery, high accuracy, and precision, assessing the eligibility of this method for routine use in the clinical context.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"79 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02045","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Antihypertensive pharmacological therapy is often characterized by a coadministration of different classes of drugs. Therefore, analytical methods allowing the simultaneous quantification of many drugs are needed for therapeutic drug monitoring (TDM) purposes in this context. In particular, TDM represents a useful tool to discriminate poor adherence from real cases of resistant hypertension. For this reason, the aim of this study is to validate, following the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) guidelines, an ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) method for the simultaneous quantification of 18 antihypertensive drugs in human plasma. A LX-50 coupled with a QSight 220 UHPLC-MS/MS system with electrospray ionization and multiple reaction monitoring mode was used, after a binary gradient separation (13 min) on a reverse-phase Acquity UPLC HSS T3 [1.8 μm, 2.1 mm × 150 mm] column. Method validation showed a stable and acceptable matrix effect, recovery, high accuracy, and precision, assessing the eligibility of this method for routine use in the clinical context.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.