Organometallic synthesis of a high-density Pt single atom catalyst on nickel for the alkaline hydrogen evolution reaction†

IF 3.2 Q2 CHEMISTRY, PHYSICAL Energy advances Pub Date : 2024-10-28 DOI:10.1039/D4YA00398E
Vineesh Thazhe Veettil, Manoj Shanmugasundaram and David Zitoun
{"title":"Organometallic synthesis of a high-density Pt single atom catalyst on nickel for the alkaline hydrogen evolution reaction†","authors":"Vineesh Thazhe Veettil, Manoj Shanmugasundaram and David Zitoun","doi":"10.1039/D4YA00398E","DOIUrl":null,"url":null,"abstract":"<p >Single atom platinum catalysts, characterized by isolated Pt atoms dispersed on suitable supports, exhibit high hydrogen evolution catalytic mass activity. The activity is usually limited by the low density of Pt atoms on the substrate. Herein, we report on a single step synthesis of a catalyst from organometallic precursors of Ni and Pt which yields a high density of Pt atoms on Ni nanoparticles dispersed on a carbon support. The spontaneous formation of Pt single atoms on the surface of Ni has not been reported in a single step reaction and is a unique feature of the organometallic route. This route allowed us to increase the atomic ratio of single Pt atoms to Ni up to 10% compared to 2% reported previously. Single Pt atoms on Ni catalysts display a high hydrogen evolution reaction activity of 660 mA mg<small><sub>Pt</sub></small><small><sup>−1</sup></small> (8 times more than that of commercial Pt) and stability as HER catalysts compared with commercial Pt/C catalysts.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 12","pages":" 2896-2902"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00398e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00398e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single atom platinum catalysts, characterized by isolated Pt atoms dispersed on suitable supports, exhibit high hydrogen evolution catalytic mass activity. The activity is usually limited by the low density of Pt atoms on the substrate. Herein, we report on a single step synthesis of a catalyst from organometallic precursors of Ni and Pt which yields a high density of Pt atoms on Ni nanoparticles dispersed on a carbon support. The spontaneous formation of Pt single atoms on the surface of Ni has not been reported in a single step reaction and is a unique feature of the organometallic route. This route allowed us to increase the atomic ratio of single Pt atoms to Ni up to 10% compared to 2% reported previously. Single Pt atoms on Ni catalysts display a high hydrogen evolution reaction activity of 660 mA mgPt−1 (8 times more than that of commercial Pt) and stability as HER catalysts compared with commercial Pt/C catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属有机合成高密度铂单原子镍催化剂用于碱性析氢反应†
单原子铂催化剂具有较高的析氢催化质量活性,其特征是分离的铂原子分散在合适的载体上。这种活性通常受到基体上铂原子密度低的限制。在此,我们报道了一种由Ni和Pt的有机金属前体一步合成催化剂的方法,该催化剂在分散在碳载体上的Ni纳米颗粒上产生高密度的Pt原子。Pt单原子在Ni表面的自发形成尚未见单步反应的报道,这是有机金属途径的独特之处。这条路线使我们能够将单个Pt原子与Ni原子的原子比提高到10%,而之前报道的比例为2%。Ni催化剂上的单个Pt原子表现出660 mA mgPt−1的高析氢反应活性(比商品Pt高8倍),并且与商品Pt/C催化剂相比,作为HER催化剂具有稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover Impact of precursor dosing on the surface passivation of AZO/AlO x stacks formed using atomic layer deposition. Back cover Reflecting on another successful year of Energy Advances Graphite particles modified by ZnO atomic layer deposition for Li-ion battery anodes†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1