Development of composites from titanate nanotubes, layered double hydroxides, and oyster shells for the enhanced removal of methylene blue, acid red 1, and congo red from aqueous solutions
Emeralda Eka Putri Setyawati, Jin-Wei Zhang, Nguyen Duy Hai, Muhammad Al Kholif, Muhammad Roil Bilad, Huan-Ping Chao
{"title":"Development of composites from titanate nanotubes, layered double hydroxides, and oyster shells for the enhanced removal of methylene blue, acid red 1, and congo red from aqueous solutions","authors":"Emeralda Eka Putri Setyawati, Jin-Wei Zhang, Nguyen Duy Hai, Muhammad Al Kholif, Muhammad Roil Bilad, Huan-Ping Chao","doi":"10.1007/s10450-024-00567-3","DOIUrl":null,"url":null,"abstract":"<div><p>The composite adsorbent derived from titanate nanotubes (TNTs), layered double hydroxides (LDHs) and oyster shell (OS) were used to removal cationic and anionic dyes. Scanning electron microscopy confirmed the successful integration of TNTs, LDHs, and OS, displaying distinct rod-like and hexagonal structures, as well as a rough surface. Energy dispersive spectroscopy identified essential elements such as calcium, sodium, oxygen, titanium, and aluminum, critical for the composite’s functionality. X-ray diffraction revealed characteristic peaks corresponding to anatase-phase titanium dioxide, LDHs, and calcium carbonate, validating TLO’s structural integrity. Fourier-transform infrared spectroscopy detected functional groups vital for adsorption, including OH-, Ti-O, and Ca-O bonds. BET surface area analysis (BET) showed a significantly larger surface area of 82.11 m²/g for TLO compared to its individual components, enhancing its adsorption capacity. Zeta potential analysis demonstrated a variable surface charge across a range of pH values, enabling TLO to effectively adsorb both cationic and anionic pollutants. Methylene blue, acid red 1, and congo red, in pH 3 to 9 solutions, showed high capacities, with maximum values of 1111 mg/g for methylene blue, 357 mg/g for acid red 1, and 192 mg/g for congo red. These results highlight TLO’s strong electrostatic attraction and ion exchange for cationic dyes, and surface precipitation for anionic dyes, particularly in neutral to alkaline environments. TLO is regarded as an effective material for advanced wastewater treatment.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10450-024-00567-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00567-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The composite adsorbent derived from titanate nanotubes (TNTs), layered double hydroxides (LDHs) and oyster shell (OS) were used to removal cationic and anionic dyes. Scanning electron microscopy confirmed the successful integration of TNTs, LDHs, and OS, displaying distinct rod-like and hexagonal structures, as well as a rough surface. Energy dispersive spectroscopy identified essential elements such as calcium, sodium, oxygen, titanium, and aluminum, critical for the composite’s functionality. X-ray diffraction revealed characteristic peaks corresponding to anatase-phase titanium dioxide, LDHs, and calcium carbonate, validating TLO’s structural integrity. Fourier-transform infrared spectroscopy detected functional groups vital for adsorption, including OH-, Ti-O, and Ca-O bonds. BET surface area analysis (BET) showed a significantly larger surface area of 82.11 m²/g for TLO compared to its individual components, enhancing its adsorption capacity. Zeta potential analysis demonstrated a variable surface charge across a range of pH values, enabling TLO to effectively adsorb both cationic and anionic pollutants. Methylene blue, acid red 1, and congo red, in pH 3 to 9 solutions, showed high capacities, with maximum values of 1111 mg/g for methylene blue, 357 mg/g for acid red 1, and 192 mg/g for congo red. These results highlight TLO’s strong electrostatic attraction and ion exchange for cationic dyes, and surface precipitation for anionic dyes, particularly in neutral to alkaline environments. TLO is regarded as an effective material for advanced wastewater treatment.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.