Theoretical investigation of the interaction between acrolein (C3H4O) molecule and novel TiAl3-doped MoS2 nanosheets

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Adsorption Pub Date : 2024-12-04 DOI:10.1007/s10450-024-00556-6
Farag M. A. Altalbawy, Mohammed Ayad Alboreadi, Soumya V. Menon, Anjan Kumar, Bharti Kumari, Rajni Verma, G. V. Siva Prasad, Zainab Ahmed Hamodi, Hussein Ghafel Shakie, Ahmed Naser Faisal, Muthna kereem
{"title":"Theoretical investigation of the interaction between acrolein (C3H4O) molecule and novel TiAl3-doped MoS2 nanosheets","authors":"Farag M. A. Altalbawy,&nbsp;Mohammed Ayad Alboreadi,&nbsp;Soumya V. Menon,&nbsp;Anjan Kumar,&nbsp;Bharti Kumari,&nbsp;Rajni Verma,&nbsp;G. V. Siva Prasad,&nbsp;Zainab Ahmed Hamodi,&nbsp;Hussein Ghafel Shakie,&nbsp;Ahmed Naser Faisal,&nbsp;Muthna kereem","doi":"10.1007/s10450-024-00556-6","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, the capability of Al, Si, P doped and novel TiAl<sub>3</sub> decorated MoS<sub>2</sub> nanosheet for sensing and adsorption of the acrolein molecule has been scrutinized through the periodic density functional theory. The changes in the energy gap after trapping acrolein molecule can be regarded as a positive factor for analyzing the electrical response of the sensor material. The adsorption energies on the doped MoS<sub>2</sub> nanosheets are higher than those on the pure nanosheets, indicating the principal influence of doping on the adsorption efficiency of substrate. Among the Al, Si and P doped MoS<sub>2</sub> systems, the highest value of adsorption energy (-0.92 eV) was observed for the Si-doped nanosheet. Also, the TiAl<sub>3</sub> decorated MoS<sub>2</sub> nanosheet exhibits a very strong adsorption effect on the acrolein molecule with considerable energy of -3.76 eV. The charge density differences for the interaction of acrolein with doped MoS<sub>2</sub> substrates were analyzed to search for the changes occurred at the adsorption region. Based on the obtained results, we can propose the TiAl<sub>3</sub> decorated MoS<sub>2</sub> substrates as potential sensors of acrolein molecules.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00556-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, the capability of Al, Si, P doped and novel TiAl3 decorated MoS2 nanosheet for sensing and adsorption of the acrolein molecule has been scrutinized through the periodic density functional theory. The changes in the energy gap after trapping acrolein molecule can be regarded as a positive factor for analyzing the electrical response of the sensor material. The adsorption energies on the doped MoS2 nanosheets are higher than those on the pure nanosheets, indicating the principal influence of doping on the adsorption efficiency of substrate. Among the Al, Si and P doped MoS2 systems, the highest value of adsorption energy (-0.92 eV) was observed for the Si-doped nanosheet. Also, the TiAl3 decorated MoS2 nanosheet exhibits a very strong adsorption effect on the acrolein molecule with considerable energy of -3.76 eV. The charge density differences for the interaction of acrolein with doped MoS2 substrates were analyzed to search for the changes occurred at the adsorption region. Based on the obtained results, we can propose the TiAl3 decorated MoS2 substrates as potential sensors of acrolein molecules.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丙烯醛(C3H4O)分子与新型tial3掺杂MoS2纳米片相互作用的理论研究
本研究通过周期密度泛函理论研究了Al、Si、P掺杂和新型TiAl3修饰的MoS2纳米片对丙烯醛分子的传感和吸附能力。捕获丙烯醛分子后能隙的变化可以作为分析传感器材料电响应的积极因素。掺杂二硫化钼纳米片上的吸附能高于纯二硫化钼纳米片上的吸附能,表明掺杂对衬底吸附效率的主要影响。在Al, Si和P掺杂的MoS2体系中,Si掺杂纳米片的吸附能最高(-0.92 eV)。此外,TiAl3修饰的MoS2纳米片对丙烯醛分子具有很强的吸附作用,吸附能量为-3.76 eV。分析了丙烯醛与掺杂二硫化钼衬底相互作用的电荷密度差异,以寻找吸附区发生的变化。基于所获得的结果,我们可以提出TiAl3修饰的MoS2底物作为丙烯醛分子的潜在传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
期刊最新文献
Investigation on the possibility of using the C2N semiconductor segment for adsorption and detection of some chlorofluorocarbons; a DFT survey DFT study of the adsorption behaviors of glycine, hystidine and phenylalanine amino acids on the novel Ag4 cluster modified BSe nanosheets: applications to bionanosensors Efficient calculation of the equilibrium composition in multicomponent batch adsorption with the steric mass action model Adsorption-biased characterization of porous solids Metal-loaded porous materials made from gold tailings: preparation and application in pollutants adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1