Genome-wide association study on root traits under non-stress and osmotic stress conditions to improve drought tolerance in rice (Oryza sativa Lin.)

IF 2.4 4区 生物学 Q2 PLANT SCIENCES Acta Physiologiae Plantarum Pub Date : 2024-12-05 DOI:10.1007/s11738-024-03752-7
Akshay Sureshrao Sakhare, Sudhir Kumar, Ranjith K. Ellur, G. D. Prahalada, Suneetha Kota, Ranjeet Ranjan Kumar, Soham Ray, Baidya Nath Mandal, Viswanathan Chinnusamy
{"title":"Genome-wide association study on root traits under non-stress and osmotic stress conditions to improve drought tolerance in rice (Oryza sativa Lin.)","authors":"Akshay Sureshrao Sakhare,&nbsp;Sudhir Kumar,&nbsp;Ranjith K. Ellur,&nbsp;G. D. Prahalada,&nbsp;Suneetha Kota,&nbsp;Ranjeet Ranjan Kumar,&nbsp;Soham Ray,&nbsp;Baidya Nath Mandal,&nbsp;Viswanathan Chinnusamy","doi":"10.1007/s11738-024-03752-7","DOIUrl":null,"url":null,"abstract":"<div><p>Rice productivity is adversely affected by drought stress. Genetic improvement is key to enhance the rice productivity in the drought prone areas. Towards identification of genes/QTLs governing root system architecture, 162 rice genotypes were phenotyped for root traits viz. primary root length, total root length, area of root surface and average root diameter under non-stress and osmotic stress (− 0.15 MPa) in hydroponics conditions. 50 k SNP genotyping data of these genotypes were used for genome-wide association study (GWAS) to identify genes/QTLs for root traits. Thirty-six most significant QTLs for constitutive and stress inductive root traits were identified of which 10 were novel QTLs. In addition, several suggestive loci governing root traits were identified. The constitutive and stress inductive root traits can be utilized in development of rice varieties that can perform well under both irrigated and stress environments.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologiae Plantarum","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-024-03752-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rice productivity is adversely affected by drought stress. Genetic improvement is key to enhance the rice productivity in the drought prone areas. Towards identification of genes/QTLs governing root system architecture, 162 rice genotypes were phenotyped for root traits viz. primary root length, total root length, area of root surface and average root diameter under non-stress and osmotic stress (− 0.15 MPa) in hydroponics conditions. 50 k SNP genotyping data of these genotypes were used for genome-wide association study (GWAS) to identify genes/QTLs for root traits. Thirty-six most significant QTLs for constitutive and stress inductive root traits were identified of which 10 were novel QTLs. In addition, several suggestive loci governing root traits were identified. The constitutive and stress inductive root traits can be utilized in development of rice varieties that can perform well under both irrigated and stress environments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非胁迫和渗透胁迫条件下水稻根系性状的全基因组关联研究
水稻产量受到干旱胁迫的不利影响。遗传改良是提高干旱易发地区水稻产量的关键。为鉴定根系结构调控基因/ qtl,对水培条件下无胁迫和渗透胁迫(- 0.15 MPa)下水稻主根长、总根长、根面面积和平均根径等性状进行了162个基因型的表型分析。利用这些基因型的50 k SNP基因分型数据进行全基因组关联研究(GWAS),鉴定根系性状相关基因/ qtl。鉴定出36个最显著的根系性状和胁迫诱导性状qtl,其中10个为新qtl。此外,还发现了几个控制根系性状的暗示性位点。根系本构性状和胁迫诱导性状可用于培育在灌溉和胁迫环境下均表现良好的水稻品种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Physiologiae Plantarum
Acta Physiologiae Plantarum 生物-植物科学
CiteScore
5.10
自引率
3.80%
发文量
125
审稿时长
3.1 months
期刊介绍: Acta Physiologiae Plantarum is an international journal established in 1978 that publishes peer-reviewed articles on all aspects of plant physiology. The coverage ranges across this research field at various levels of biological organization, from relevant aspects in molecular and cell biology to biochemistry. The coverage is global in scope, offering articles of interest from experts around the world. The range of topics includes measuring effects of environmental pollution on crop species; analysis of genomic organization; effects of drought and climatic conditions on plants; studies of photosynthesis in ornamental plants, and more.
期刊最新文献
Appraisal of the physio-biochemical efficacy of exogenously applied natural and synthetic sources of plant growth stimulants in modulating drought stress tolerance in maize (Zea mays L.) PbSQE3 and PbSQE6 regulates the formation of triterpenoid compounds in the russet mutant of ‘Dangshansuli variety’ pear Exogenous ascorbic acid mitigates salt‐induced damage in soybean by modulating photosynthesis, antioxidant defense, and ionic homeostasis Influence of different storage temperature on physiology, quality, antioxidant activity and shelf life of avocado fruits (Persea americana Mill.) Spatial distribution of mRNA transcripts of chitinases class VII and beta-1,3-glucanases class II in flax zygotic and somatic embryo development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1