Induja Govindan, Angeeta Paul, Annamalai Rama, Anjana A. Kailas, K. A. Abutwaibe, Thamizharasan Annadurai, Anup Naha
{"title":"Mesogenic Architectures for Advanced Drug Delivery: Interrogating Lyotropic and Thermotropic Liquid Crystals","authors":"Induja Govindan, Angeeta Paul, Annamalai Rama, Anjana A. Kailas, K. A. Abutwaibe, Thamizharasan Annadurai, Anup Naha","doi":"10.1208/s12249-024-02985-6","DOIUrl":null,"url":null,"abstract":"<div><p>The possibility of precisely regulating and targeting drug release with mesophase or Liquid crystal drug delivery systems has drawn much attention recently. This review offers a thorough investigation of liquid crystal drug delivery systems with an emphasis on their mesogenic architecture. It describes the various liquid crystal forms such as thermotropic and lyotropic liquid crystals and their applicability in advanced drug delivery. Liquid crystals are used as excellent carriers due to their distinctive characteristics, such as stimuli-responsive drug delivery and sustained release patterns. Comprehending the materials that form mesophase provides insight into their distinct physiochemical characteristics and their use in drug delivery. This review highlights the important role lyotropic and thermotropic liquid crystals play in drug delivery, underscoring their considerable potential. The transition of thermotropic liquid crystals from their conventional technological applications to drug delivery has been studied. Nonetheless, a few challenges still need to be addressed, including formulation strategy refinement, regulating release rates, maximising the loading of hydrophilic drugs, and storage stability. In the pharmaceutical field, addressing these issues will open the door to a revolutionary paradigm that will revolutionise therapeutic outcomes and improve patient care.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-024-02985-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02985-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The possibility of precisely regulating and targeting drug release with mesophase or Liquid crystal drug delivery systems has drawn much attention recently. This review offers a thorough investigation of liquid crystal drug delivery systems with an emphasis on their mesogenic architecture. It describes the various liquid crystal forms such as thermotropic and lyotropic liquid crystals and their applicability in advanced drug delivery. Liquid crystals are used as excellent carriers due to their distinctive characteristics, such as stimuli-responsive drug delivery and sustained release patterns. Comprehending the materials that form mesophase provides insight into their distinct physiochemical characteristics and their use in drug delivery. This review highlights the important role lyotropic and thermotropic liquid crystals play in drug delivery, underscoring their considerable potential. The transition of thermotropic liquid crystals from their conventional technological applications to drug delivery has been studied. Nonetheless, a few challenges still need to be addressed, including formulation strategy refinement, regulating release rates, maximising the loading of hydrophilic drugs, and storage stability. In the pharmaceutical field, addressing these issues will open the door to a revolutionary paradigm that will revolutionise therapeutic outcomes and improve patient care.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.