{"title":"The X-linked intellectual disability gene CUL4B is critical for memory and synaptic function.","authors":"Wei Jiang, Jian Zhang, Molin Wang, Yongxin Zou, Qiao Liu, Yu Song, Gongping Sun, Yaoqin Gong, Fan Zhang, Baichun Jiang","doi":"10.1186/s40478-024-01903-y","DOIUrl":null,"url":null,"abstract":"<p><p>Cullin 4B (CUL4B) is the scaffold protein in the CUL4B-RING E3 ubiquitin ligase (CRL4B) complex. Loss-of-function mutations in the human CUL4B gene lead to syndromic X-linked intellectual disability (XLID). Till now, the mechanism of intellectual disability caused by CUL4B mutation still needs to be elucidated. In this study, we used single-nucleus RNA sequencing (snRNA-seq) to investigate the impact of CUL4B deficiency on the transcriptional programs of diverse cell types. The results revealed that depletion of CUL4B resulted in impaired intercellular communication and elicited cell type-specific transcriptional changes relevant to synapse dysfunction. Golgi-Cox staining of brain slices and immunostaining of in vitro cultured neurons revealed remarkable synapse loss in CUL4B-deficient mice. Ultrastructural analysis via transmission electron microscopy (TEM) showed that the width of the synaptic cleft was significantly greater in CUL4B-deficient mice. Electrophysiological experiments found a decrease in the amplitude of AMPA receptor-mediated EPSCs in the hippocampal CA1 pyramidal neurons of CUL4B-deficient mice. These results indicate that depletion of CUL4B in mice results in morphological and functional abnormalities in synapses. Furthermore, behavioral tests revealed that depletion of CUL4B in the mouse nervous system results in impaired spatial learning and memory. Taken together, the findings of this study reveal the pathogenesis of neurological disorders associated with CUL4B mutations and promote the identification of therapeutic targets that can halt synaptic abnormalities and preserve memory in individuals.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"12 1","pages":"188"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619648/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-024-01903-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cullin 4B (CUL4B) is the scaffold protein in the CUL4B-RING E3 ubiquitin ligase (CRL4B) complex. Loss-of-function mutations in the human CUL4B gene lead to syndromic X-linked intellectual disability (XLID). Till now, the mechanism of intellectual disability caused by CUL4B mutation still needs to be elucidated. In this study, we used single-nucleus RNA sequencing (snRNA-seq) to investigate the impact of CUL4B deficiency on the transcriptional programs of diverse cell types. The results revealed that depletion of CUL4B resulted in impaired intercellular communication and elicited cell type-specific transcriptional changes relevant to synapse dysfunction. Golgi-Cox staining of brain slices and immunostaining of in vitro cultured neurons revealed remarkable synapse loss in CUL4B-deficient mice. Ultrastructural analysis via transmission electron microscopy (TEM) showed that the width of the synaptic cleft was significantly greater in CUL4B-deficient mice. Electrophysiological experiments found a decrease in the amplitude of AMPA receptor-mediated EPSCs in the hippocampal CA1 pyramidal neurons of CUL4B-deficient mice. These results indicate that depletion of CUL4B in mice results in morphological and functional abnormalities in synapses. Furthermore, behavioral tests revealed that depletion of CUL4B in the mouse nervous system results in impaired spatial learning and memory. Taken together, the findings of this study reveal the pathogenesis of neurological disorders associated with CUL4B mutations and promote the identification of therapeutic targets that can halt synaptic abnormalities and preserve memory in individuals.
Cullin 4B (CUL4B)是CUL4B- ring E3泛素连接酶(CRL4B)复合物中的支架蛋白。人类CUL4B基因的功能缺失突变可导致综合征性x连锁智力残疾(XLID)。迄今为止,CUL4B突变导致智力残疾的机制仍有待阐明。在这项研究中,我们使用单核RNA测序(snRNA-seq)来研究CUL4B缺乏对不同细胞类型转录程序的影响。结果显示,CUL4B的缺失导致细胞间通讯受损,并引发与突触功能障碍相关的细胞类型特异性转录变化。脑切片高尔基-考克斯染色和体外培养神经元免疫染色显示,cul4b缺陷小鼠突触明显缺失。透射电镜(TEM)超微结构分析显示,cul4b缺陷小鼠突触间隙宽度明显增大。电生理实验发现cul4b缺陷小鼠海马CA1锥体神经元中AMPA受体介导的EPSCs振幅降低。这些结果表明,CUL4B在小鼠体内的缺失会导致突触的形态和功能异常。此外,行为测试显示,小鼠神经系统中CUL4B的消耗导致空间学习和记忆受损。综上所述,本研究的发现揭示了与CUL4B突变相关的神经系统疾病的发病机制,并促进了能够阻止突触异常和保持个体记忆的治疗靶点的鉴定。
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.