Toward Precise Fabrication of Finite-Sized DNA Origami Superstructures.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-12-05 DOI:10.1002/smtd.202401629
Dongsheng Li, Jinyi Dong, Yihao Zhou, Qiangbin Wang
{"title":"Toward Precise Fabrication of Finite-Sized DNA Origami Superstructures.","authors":"Dongsheng Li, Jinyi Dong, Yihao Zhou, Qiangbin Wang","doi":"10.1002/smtd.202401629","DOIUrl":null,"url":null,"abstract":"<p><p>DNA origami enables the precise construction of 2D and 3D nanostructures with customizable shapes and the high-resolution organization of functional materials. However, the size of a single DNA origami is constrained by the length of the scaffold strand, and since its inception, scaling up the size and complexity has been a persistent pursuit. Hierarchical self-assembly of DNA origami units offers a feasible approach to overcome the limitation. Unlike periodic arrays, finite-sized DNA origami superstructures feature well-defined structural boundaries and uniform dimensions. In recent years, increasing attention has been directed toward precise control over the hierarchical self-assembly of DNA origami structures and their applications in fields such as nanophotonics, biophysics, and material science. This review summarizes the strategies for fabricating finite-sized DNA origami superstructures, including heterogeneous self-assembly, self-limited self-assembly, and templated self-assembly, along with a comparative analysis of the advantages and limitations of each approach. Subsequently, recent advancements in the application of these structures are discussed from a structure design perspective. Finally, an outlook on the current challenges and potential future directions is provided, highlighting opportunities for further research and development in this rapidly evolving field.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401629"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401629","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

DNA origami enables the precise construction of 2D and 3D nanostructures with customizable shapes and the high-resolution organization of functional materials. However, the size of a single DNA origami is constrained by the length of the scaffold strand, and since its inception, scaling up the size and complexity has been a persistent pursuit. Hierarchical self-assembly of DNA origami units offers a feasible approach to overcome the limitation. Unlike periodic arrays, finite-sized DNA origami superstructures feature well-defined structural boundaries and uniform dimensions. In recent years, increasing attention has been directed toward precise control over the hierarchical self-assembly of DNA origami structures and their applications in fields such as nanophotonics, biophysics, and material science. This review summarizes the strategies for fabricating finite-sized DNA origami superstructures, including heterogeneous self-assembly, self-limited self-assembly, and templated self-assembly, along with a comparative analysis of the advantages and limitations of each approach. Subsequently, recent advancements in the application of these structures are discussed from a structure design perspective. Finally, an outlook on the current challenges and potential future directions is provided, highlighting opportunities for further research and development in this rapidly evolving field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
DNA-Assisted Separation of Nanoparticles. Fast Kinetics Enabled by Ion Enrichment Layer for Dendrite-Free Zinc Anode. Unraveling the Interplay Between Memristive and Magnetoresistive Behaviors in LaCoO3/SrTiO3 Superlattice-Based Neural Synaptic Devices. A Strategy for Mitigating Lattice Stress and Enhancing Cycle Stability Through Modulating Transition Metal Redox Sequence. Heterogeneity During the Formation of Waterborne Barrier Coating Revealed by Cryogenic Transmission Electron Microscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1