Constructed 2D sandwich-like layer WO3/Ti3C2/ZnIn2S4 Z-scheme heterojunction by chemical bond for effective photocatalytic hydrogen production.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-03-15 Epub Date: 2024-12-01 DOI:10.1016/j.jcis.2024.11.238
Hui Wu, Zengxin Lou, Kai Kang, Chunjuan Zhang, Xinyue Ji, Hanqiao Chu, Shuoheng Wei, Wenzhe Xu, Guanyun Wang, Junkai Pan, Juan Liu, Yongchao Bao
{"title":"Constructed 2D sandwich-like layer WO<sub>3</sub>/Ti<sub>3</sub>C<sub>2</sub>/ZnIn<sub>2</sub>S<sub>4</sub> Z-scheme heterojunction by chemical bond for effective photocatalytic hydrogen production.","authors":"Hui Wu, Zengxin Lou, Kai Kang, Chunjuan Zhang, Xinyue Ji, Hanqiao Chu, Shuoheng Wei, Wenzhe Xu, Guanyun Wang, Junkai Pan, Juan Liu, Yongchao Bao","doi":"10.1016/j.jcis.2024.11.238","DOIUrl":null,"url":null,"abstract":"<p><p>Photocatalytic water-splitting has gained significant global attention in recent years. However, identifying effective photocatalysts remains challenging due to the rapid recombination of photoinduced charge carriers. In this study, two-dimensional (2D) sandwich-like layer WO<sub>3</sub>/Ti<sub>3</sub>C<sub>2</sub>/ZnIn<sub>2</sub>S<sub>4</sub> photocatalysts were successfully fabricated using a simple anaerobic solvothermal process. The 2D Z-scheme heterojunction enhances rapid charge transport via TiS or TiOW bonds, serving as efficient charge transfer channels and minimizing the distance for interfacial photocarrier transfer. Consequently, the hydrogen production rate of 20 % WO<sub>3</sub>/Ti<sub>3</sub>C<sub>2</sub>/ZnIn<sub>2</sub>S<sub>4</sub> composite reaches 7.39 mmol·g<sup>-1</sup>·h<sup>-1</sup>, which is 3.5 and 7.1 times higher than that of 20 % Ti<sub>3</sub>C<sub>2</sub>/ZnIn<sub>2</sub>S<sub>4</sub> and pure ZnIn<sub>2</sub>S<sub>4,</sub> respectively. Furthermore, the hydrogen production rate of 20 % WO<sub>3</sub>/Ti<sub>3</sub>C<sub>2</sub>/ZnIn<sub>2</sub>S<sub>4</sub> composite reaches 2.54 mmol·g<sup>-1</sup>·h<sup>-1</sup> without the use of sacrificial agents. This work paves the way for designing 2D sandwich-like Z-scheme heterostructures through interfacial chemical bonds.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"403-412"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.11.238","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic water-splitting has gained significant global attention in recent years. However, identifying effective photocatalysts remains challenging due to the rapid recombination of photoinduced charge carriers. In this study, two-dimensional (2D) sandwich-like layer WO3/Ti3C2/ZnIn2S4 photocatalysts were successfully fabricated using a simple anaerobic solvothermal process. The 2D Z-scheme heterojunction enhances rapid charge transport via TiS or TiOW bonds, serving as efficient charge transfer channels and minimizing the distance for interfacial photocarrier transfer. Consequently, the hydrogen production rate of 20 % WO3/Ti3C2/ZnIn2S4 composite reaches 7.39 mmol·g-1·h-1, which is 3.5 and 7.1 times higher than that of 20 % Ti3C2/ZnIn2S4 and pure ZnIn2S4, respectively. Furthermore, the hydrogen production rate of 20 % WO3/Ti3C2/ZnIn2S4 composite reaches 2.54 mmol·g-1·h-1 without the use of sacrificial agents. This work paves the way for designing 2D sandwich-like Z-scheme heterostructures through interfacial chemical bonds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用化学键构建二维夹层WO3/Ti3C2/ZnIn2S4 Z-scheme异质结,用于有效的光催化制氢。
近年来,光催化水分解技术得到了广泛的关注。然而,由于光诱导载流子的快速重组,确定有效的光催化剂仍然具有挑战性。在本研究中,采用简单的厌氧溶剂热法制备了二维(2D)三明治状WO3/Ti3C2/ZnIn2S4光催化剂。二维z -方案异质结增强了通过ti或TiOW键的快速电荷传输,作为有效的电荷转移通道,并最小化了界面光载流子转移的距离。结果表明,20% WO3/Ti3C2/ZnIn2S4复合材料的产氢率达到7.39 mmol·g-1·h-1,分别是20% Ti3C2/ZnIn2S4和纯ZnIn2S4的3.5倍和7.1倍。在不使用牺牲剂的情况下,20% WO3/Ti3C2/ZnIn2S4复合材料的产氢率达到2.54 mmol·g-1·h-1。这项工作为通过界面化学键设计二维三明治状z型异质结构铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Efficient activation of peroxymonosulfate by Mo2TiC2Tx@Co for sustained emerging micropollutant removal: Mo vacancy-mediated activation in Fenton-like reactions. High-entropy NASICON-Type Li1.3Al0.4Ti0.5Zr0.5Sn0.5Ta0.1(PO4)3 with high electrochemical stability for lithium-ion batteries. Using reduced sericin as a green resist for precise pattern fabrication via water-based lithography. Atomically dispersed rare earth dysprosium-nitrogen-carbon for boosting oxygen reduction reaction. Liquid nitrogen quenching for efficient Bifunctional electrocatalysts in water Splitting: Achieving four key objectives in one step.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1