Directional web strikes are performed by ray spiders in response to airborne prey vibrations.

IF 2.8 2区 生物学 Q2 BIOLOGY Journal of Experimental Biology Pub Date : 2024-12-01 Epub Date: 2024-12-04 DOI:10.1242/jeb.249237
Sarah I Han, Todd A Blackledge
{"title":"Directional web strikes are performed by ray spiders in response to airborne prey vibrations.","authors":"Sarah I Han, Todd A Blackledge","doi":"10.1242/jeb.249237","DOIUrl":null,"url":null,"abstract":"<p><p>Most orb-weaving spiders use static webs that deform only after flying prey hit the webs. However, ray spiders (Theridiosoma gemmosum) pull orb webs into cones that are loaded with enough elastic energy to snap back like slingshots at accelerations of up to 504 m s-2 once released. We test the hypothesis that ray spiders sense vibrations from flying insects to release their webs and capture prey in mid-flight. We show that spiders release webs in response to live tethered mosquitoes that are not touching silk. Web release is most likely when mosquitoes are in front of the web and within the 'capture cone' where the capture spiral moves directly into the insects' flight. In summary, ray spiders use airborne stimuli to determine both the direction and distance of flying prey. Perception of airborne cues from flying insects may be an under-appreciated source of information for other web-building spider species about the approach, size and/or behaviors of insects prior to contact with webs.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"227 23","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249237","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Most orb-weaving spiders use static webs that deform only after flying prey hit the webs. However, ray spiders (Theridiosoma gemmosum) pull orb webs into cones that are loaded with enough elastic energy to snap back like slingshots at accelerations of up to 504 m s-2 once released. We test the hypothesis that ray spiders sense vibrations from flying insects to release their webs and capture prey in mid-flight. We show that spiders release webs in response to live tethered mosquitoes that are not touching silk. Web release is most likely when mosquitoes are in front of the web and within the 'capture cone' where the capture spiral moves directly into the insects' flight. In summary, ray spiders use airborne stimuli to determine both the direction and distance of flying prey. Perception of airborne cues from flying insects may be an under-appreciated source of information for other web-building spider species about the approach, size and/or behaviors of insects prior to contact with webs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定向网攻击是射线蜘蛛对空中猎物振动的反应。
大多数圆织蜘蛛使用静态网,只有在飞行的猎物击中网后才会变形。然而,射线蜘蛛(Theridiosoma gemmosum)会把球网拉成锥状,这些锥状蛛网承载着足够的弹性能量,一旦释放,就能像弹弓一样以高达504米/秒的加速度弹回来。我们对射线蜘蛛的假设进行了验证,射线蜘蛛可以感知飞行昆虫的振动,从而在飞行中释放蛛网并捕获猎物。我们的研究表明,蜘蛛释放蛛网是对被拴住的蚊子的反应,这些蚊子没有接触到蛛丝。当蚊子在蛛网前和“捕获锥”内时,蛛网释放的可能性最大,在“捕获锥”内,捕获螺旋直接移动到昆虫的飞行中。总之,射线蜘蛛利用空气中的刺激来确定飞行猎物的方向和距离。对于其他造网的蜘蛛来说,从飞虫身上获得的空中线索的感知可能是一个被低估的信息来源,关于昆虫在接触蛛网之前的方式、大小和/或行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
期刊最新文献
Light alters calling-song characteristics in crickets. Multispecies comparisons support a startle response origin for a novel vibrational signal in the cricket tribe Lebinthini. WildPose: A long-range 3D wildlife motion capture system. Towards a standard application of the Reynolds number in studies of aquatic animal locomotion. Allatostatin-C signaling in the crab, Carcinus maenas is implicated in the ecdysis programme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1