YAP1 induces bladder cancer progression and promotes immune evasion through IL-6/ STAT3 pathway and CXCL deregulation.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Journal of Clinical Investigation Pub Date : 2024-11-21 DOI:10.1172/JCI171164
Pritam Sadhukhan, Mingxiao Feng, Emily J Illingworth, Ido Sloma, Akira Ooki, Andres Matoso, David Sidransky, Burles A Johnson Rd, Luigi Marchionni, Fenna Cm Sillé, Woonyoung Choi, David J McConkey, Mohammad Obaidul Hoque
{"title":"YAP1 induces bladder cancer progression and promotes immune evasion through IL-6/ STAT3 pathway and CXCL deregulation.","authors":"Pritam Sadhukhan, Mingxiao Feng, Emily J Illingworth, Ido Sloma, Akira Ooki, Andres Matoso, David Sidransky, Burles A Johnson Rd, Luigi Marchionni, Fenna Cm Sillé, Woonyoung Choi, David J McConkey, Mohammad Obaidul Hoque","doi":"10.1172/JCI171164","DOIUrl":null,"url":null,"abstract":"<p><p>The Hippo signaling pathway plays a key role in tumorigenesis in different cancer types. We investigated the role of the Hippo \"effector\" YAP1 on the tumor immune microenvironment (TIME) of urothelial carcinoma of bladder (UCB) and evaluated the efficacy of immunotherapy in the context of YAP1 signaling. We performed numerous in vitro and in vivo experiments to determine the role of YAP1 using genetic and pharmacological attenuation of YAP1 activity. Briefly, RNA sequencing was carried out with mice and human cell lines to identify novel YAP1-regulated downstream targets unbiasedly. We then experimentally confirmed that YAP1 regulates the TIME through the IL-6/STAT3 signaling pathway and varied C-X-C motif chemokine regulation. We analyzed several human sample sets to explore the TIME status in the context of YAP1 expression. Our data indicate that YAP1 attenuation decreases M2 macrophages and MDSCs in the TIME compared to YAP1 expressing cells. In summary, this study provides insights on YAP1 signaling as a driver for cancer stemness and an inducer of immunosuppressive TIME. Moreover, the therapeutic efficacy of YAP1 attenuation indicates that combined blockade of YAP1 and immune checkpoints may yield clinical value for treating UCB patients.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI171164","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Hippo signaling pathway plays a key role in tumorigenesis in different cancer types. We investigated the role of the Hippo "effector" YAP1 on the tumor immune microenvironment (TIME) of urothelial carcinoma of bladder (UCB) and evaluated the efficacy of immunotherapy in the context of YAP1 signaling. We performed numerous in vitro and in vivo experiments to determine the role of YAP1 using genetic and pharmacological attenuation of YAP1 activity. Briefly, RNA sequencing was carried out with mice and human cell lines to identify novel YAP1-regulated downstream targets unbiasedly. We then experimentally confirmed that YAP1 regulates the TIME through the IL-6/STAT3 signaling pathway and varied C-X-C motif chemokine regulation. We analyzed several human sample sets to explore the TIME status in the context of YAP1 expression. Our data indicate that YAP1 attenuation decreases M2 macrophages and MDSCs in the TIME compared to YAP1 expressing cells. In summary, this study provides insights on YAP1 signaling as a driver for cancer stemness and an inducer of immunosuppressive TIME. Moreover, the therapeutic efficacy of YAP1 attenuation indicates that combined blockade of YAP1 and immune checkpoints may yield clinical value for treating UCB patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
期刊最新文献
An Activin Receptor-Like Kinase 1-governed monocytic lineage shapes an immunosuppressive landscape in breast cancer metastases. TRAIL agonists rescue mice from radiation-induced lung, skin or esophageal injury. Impaired hydrogen sulfide biosynthesis underlies eccentric contraction-induced force loss in dystrophin-deficient skeletal muscle. LIN28B-mediated PI3K/AKT pathway activation promotes metastasis in colorectal cancer models. PDGFRα inhibition reduces myofibroblast expansion in the fibrotic rim and enhances recovery after ischemic stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1