Glyphosate exposure exacerbates neuroinflammation and Alzheimer's disease-like pathology despite a 6-month recovery period in mice.

IF 9.3 1区 医学 Q1 IMMUNOLOGY Journal of Neuroinflammation Pub Date : 2024-12-04 DOI:10.1186/s12974-024-03290-6
Samantha K Bartholomew, Wendy Winslow, Ritin Sharma, Khyatiben V Pathak, Savannah Tallino, Jessica M Judd, Hector Leon, Julie Turk, Patrick Pirrotte, Ramon Velazquez
{"title":"Glyphosate exposure exacerbates neuroinflammation and Alzheimer's disease-like pathology despite a 6-month recovery period in mice.","authors":"Samantha K Bartholomew, Wendy Winslow, Ritin Sharma, Khyatiben V Pathak, Savannah Tallino, Jessica M Judd, Hector Leon, Julie Turk, Patrick Pirrotte, Ramon Velazquez","doi":"10.1186/s12974-024-03290-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glyphosate use in the United States (US) has increased each year since the introduction of glyphosate-tolerant crops in 1996, yet little is known about its effects on the brain. We recently found that C57BL/6J mice dosed with glyphosate for 14 days showed glyphosate and its major metabolite aminomethylphosphonic acid present in brain tissue, with corresponding increases in pro-inflammatory cytokine tumor necrosis factor-⍺ (TNF-⍺) in the brain and peripheral blood plasma. Since TNF-⍺ is elevated in neurodegenerative disorders such as Alzheimer's Disease (AD), in this study, we asked whether glyphosate exposure serves as an accelerant of AD pathogenesis. Additionally, whether glyphosate and aminomethylphosphonic acid remain in the brain after a recovery period has yet to be examined.</p><p><strong>Methods: </strong>We hypothesized that glyphosate exposure would induce neuroinflammation in control mice, while exacerbating neuroinflammation in AD mice, causing elevated Amyloid-β and tau pathology and worsening spatial cognition after recovery. We dosed 4.5-month-old 3xTg-AD and non-transgenic (NonTg) control mice with either 0, 50 or 500 mg/kg of glyphosate daily for 13 weeks followed by a 6-month recovery period.</p><p><strong>Results: </strong>We found that aminomethylphosphonic acid was detectable in the brains of 3xTg-AD and NonTg glyphosate-dosed mice despite the 6-month recovery. Glyphosate-dosed 3xTg-AD mice showed reduced survival, increased thigmotaxia in the Morris water maze, significant increases in the beta secretase enzyme (BACE-1) of amyloidogenic processing, amyloid-β (Aβ) 42 insoluble fractions, Aβ 42 plaque load and plaque size, and phosphorylated tau (pTau) at epitopes Threonine 181, Serine 396, and AT8 (Serine 202, Threonine 205). Notably, we found increased pro- and anti-inflammatory cytokines and chemokines persisting in both 3xTg-AD and NonTg brain tissue and in 3xTg-AD peripheral blood plasma.</p><p><strong>Conclusion: </strong>Taken together, our results are the first to demonstrate that despite an extended recovery period, exposure to glyphosate elicits long-lasting pathological consequences. As glyphosate use continues to rise, more research is needed to elucidate the impact of this herbicide and its metabolites on the human brain, and their potential to contribute to dysfunctions observed in neurodegenerative diseases.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"316"},"PeriodicalIF":9.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-024-03290-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Glyphosate use in the United States (US) has increased each year since the introduction of glyphosate-tolerant crops in 1996, yet little is known about its effects on the brain. We recently found that C57BL/6J mice dosed with glyphosate for 14 days showed glyphosate and its major metabolite aminomethylphosphonic acid present in brain tissue, with corresponding increases in pro-inflammatory cytokine tumor necrosis factor-⍺ (TNF-⍺) in the brain and peripheral blood plasma. Since TNF-⍺ is elevated in neurodegenerative disorders such as Alzheimer's Disease (AD), in this study, we asked whether glyphosate exposure serves as an accelerant of AD pathogenesis. Additionally, whether glyphosate and aminomethylphosphonic acid remain in the brain after a recovery period has yet to be examined.

Methods: We hypothesized that glyphosate exposure would induce neuroinflammation in control mice, while exacerbating neuroinflammation in AD mice, causing elevated Amyloid-β and tau pathology and worsening spatial cognition after recovery. We dosed 4.5-month-old 3xTg-AD and non-transgenic (NonTg) control mice with either 0, 50 or 500 mg/kg of glyphosate daily for 13 weeks followed by a 6-month recovery period.

Results: We found that aminomethylphosphonic acid was detectable in the brains of 3xTg-AD and NonTg glyphosate-dosed mice despite the 6-month recovery. Glyphosate-dosed 3xTg-AD mice showed reduced survival, increased thigmotaxia in the Morris water maze, significant increases in the beta secretase enzyme (BACE-1) of amyloidogenic processing, amyloid-β (Aβ) 42 insoluble fractions, Aβ 42 plaque load and plaque size, and phosphorylated tau (pTau) at epitopes Threonine 181, Serine 396, and AT8 (Serine 202, Threonine 205). Notably, we found increased pro- and anti-inflammatory cytokines and chemokines persisting in both 3xTg-AD and NonTg brain tissue and in 3xTg-AD peripheral blood plasma.

Conclusion: Taken together, our results are the first to demonstrate that despite an extended recovery period, exposure to glyphosate elicits long-lasting pathological consequences. As glyphosate use continues to rise, more research is needed to elucidate the impact of this herbicide and its metabolites on the human brain, and their potential to contribute to dysfunctions observed in neurodegenerative diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
草甘膦暴露加剧了小鼠的神经炎症和阿尔茨海默病样病理,尽管有6个月的恢复期。
背景:自1996年引进抗草甘膦作物以来,草甘膦在美国的使用量每年都在增加,但对其对大脑的影响知之甚少。我们最近发现,C57BL/6J小鼠给予草甘膦14天后,脑组织中出现草甘膦及其主要代谢物氨基甲基膦酸,脑组织和外周血中促炎细胞因子肿瘤坏死因子- TNF-升高。由于TNF-在神经退行性疾病如阿尔茨海默病(AD)中升高,在本研究中,我们询问草甘膦暴露是否作为AD发病机制的促进剂。此外,草甘膦和氨基甲基膦酸在恢复期后是否仍留在大脑中还有待研究。方法:我们假设草甘膦暴露会诱发对照小鼠的神经炎症,同时加重AD小鼠的神经炎症,导致淀粉样蛋白-β和tau病理升高,恢复后的空间认知能力下降。我们给4.5个月大的3xTg-AD和非转基因(NonTg)对照小鼠每天分别给予0、50或500 mg/kg的草甘膦,持续13周,然后进行6个月的恢复期。结果:我们发现3xTg-AD和NonTg草甘膦剂量小鼠的大脑中尽管恢复了6个月,但仍可检测到氨基甲基膦酸。草甘磷剂量的3xTg-AD小鼠表现出存活率降低,Morris水迷宫中thigmotaxia增加,淀粉样蛋白加工的β分泌酶(BACE-1),淀粉样蛋白-β (Aβ) 42不溶性部分,Aβ 42斑块负荷和斑块大小显著增加,磷酸化tau蛋白(pTau)在表位苏氨酸181,丝氨酸396和AT8(丝氨酸202,苏氨酸205)。值得注意的是,我们发现3xTg-AD和非tg脑组织以及3xTg-AD外周血血浆中亲炎性和抗炎性细胞因子和趋化因子持续增加。结论:综上所述,我们的研究结果首次证明,尽管恢复期延长,暴露于草甘膦会引起长期的病理后果。随着草甘膦使用量的持续增加,需要更多的研究来阐明这种除草剂及其代谢物对人类大脑的影响,以及它们可能导致神经退行性疾病中观察到的功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
期刊最新文献
CCL21-CCR7 blockade prevents neuroinflammation and degeneration in Parkinson's disease models. Probiotics alleviate painful diabetic neuropathy by modulating the microbiota-gut-nerve axis in rats. Astrocytic heterogeneous nuclear ribonucleoprotein U is involved in scar formation after spinal cord injury. Exploratory analysis of a Novel RACK1 mutation and its potential role in epileptic seizures via Microglia activation. Microglial C/EBPβ-Fcgr1 regulatory axis blocking inhibits microglial pyroptosis and improves neurological recovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1