Darien Yu De Kwek, Magdiel Inggrid Setyawati, Archana Gautam, Sunil S Adav, Ee Cherk Cheong, Kee Woei Ng
{"title":"Understanding the toxicological effects of TiO<sub>2</sub> nanoparticles extracted from sunscreens on human keratinocytes and skin explants.","authors":"Darien Yu De Kwek, Magdiel Inggrid Setyawati, Archana Gautam, Sunil S Adav, Ee Cherk Cheong, Kee Woei Ng","doi":"10.1186/s12989-024-00610-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Inorganic ultraviolet filters such as titanium dioxide nanoparticles are frequently used in sunscreens. Numerous toxicological studies in vitro and in vivo have been conducted using pristine standard reference nanomaterials of these inorganic filters. While convenient, this approach is not realistic because the complex environment of sunscreen formulations could change the physicochemical properties of the nanoparticles and lead to vastly different toxicological outcomes. Therefore, this study focused on characterizing nanoparticles extracted from commercial sunscreen and evaluating the associated toxicological impacts upon exposure to human keratinocytes and human skin explants.</p><p><strong>Results: </strong>Titanium dioxide nanoparticles were extracted from commercial sunscreens and thoroughly characterized. The identity of the associated molecular corona on the extracted nanoparticles was also evaluated. Cell metabolic and proliferation profiles, mitochondrial superoxide activity, reactive oxygen species levels, and genotoxicity induced through exposure to the nanoparticles were studied in vitro using a human keratinocyte cell line. The cell response was significantly different after treatment with pristine nanoparticles compared to corresponding sunscreen-extracted nanoparticles. Pristine spherical nanoparticles resulted in more pronounced toxicity in 2D cultured keratinocytes compared to extracted nanoparticles but did not impact wound-edge migration significantly in 3D ex vivo human skin explant models. Additionally, extracted rod-shaped nanoparticles had greater toxic impacts in keratinocytes in vitro and retarded wound-edge migration in the ex vivo model compared to the extracted spherical nanoparticles. Nevertheless, these heightened cell responses were not associated with any increase in phosphorylated γH<sub>2</sub>AX (which is indicative of DNA damage) both in vitro and ex vivo.</p><p><strong>Conclusions: </strong>This study shows the feasibility of extracting nanoparticles from personal care products such as sunscreens to obtain relevant forms to model real-life exposure scenarios. Overall, sunscreen-extracted nanoparticles were found to be less toxic compared to pristine equivalents but retarded wound-edge migration more significantly. Skin explant cultures provide a more realistic alternative to monolayer cell cultures, although the differential outcomes between the models need more in-depth evaluation.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"49"},"PeriodicalIF":7.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle and Fibre Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12989-024-00610-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Inorganic ultraviolet filters such as titanium dioxide nanoparticles are frequently used in sunscreens. Numerous toxicological studies in vitro and in vivo have been conducted using pristine standard reference nanomaterials of these inorganic filters. While convenient, this approach is not realistic because the complex environment of sunscreen formulations could change the physicochemical properties of the nanoparticles and lead to vastly different toxicological outcomes. Therefore, this study focused on characterizing nanoparticles extracted from commercial sunscreen and evaluating the associated toxicological impacts upon exposure to human keratinocytes and human skin explants.
Results: Titanium dioxide nanoparticles were extracted from commercial sunscreens and thoroughly characterized. The identity of the associated molecular corona on the extracted nanoparticles was also evaluated. Cell metabolic and proliferation profiles, mitochondrial superoxide activity, reactive oxygen species levels, and genotoxicity induced through exposure to the nanoparticles were studied in vitro using a human keratinocyte cell line. The cell response was significantly different after treatment with pristine nanoparticles compared to corresponding sunscreen-extracted nanoparticles. Pristine spherical nanoparticles resulted in more pronounced toxicity in 2D cultured keratinocytes compared to extracted nanoparticles but did not impact wound-edge migration significantly in 3D ex vivo human skin explant models. Additionally, extracted rod-shaped nanoparticles had greater toxic impacts in keratinocytes in vitro and retarded wound-edge migration in the ex vivo model compared to the extracted spherical nanoparticles. Nevertheless, these heightened cell responses were not associated with any increase in phosphorylated γH2AX (which is indicative of DNA damage) both in vitro and ex vivo.
Conclusions: This study shows the feasibility of extracting nanoparticles from personal care products such as sunscreens to obtain relevant forms to model real-life exposure scenarios. Overall, sunscreen-extracted nanoparticles were found to be less toxic compared to pristine equivalents but retarded wound-edge migration more significantly. Skin explant cultures provide a more realistic alternative to monolayer cell cultures, although the differential outcomes between the models need more in-depth evaluation.
期刊介绍:
Particle and Fibre Toxicology is an online journal that is open access and peer-reviewed. It covers a range of disciplines such as material science, biomaterials, and nanomedicine, focusing on the toxicological effects of particles and fibres. The journal serves as a platform for scientific debate and communication among toxicologists and scientists from different fields who work with particle and fibre materials. The main objective of the journal is to deepen our understanding of the physico-chemical properties of particles, their potential for human exposure, and the resulting biological effects. It also addresses regulatory issues related to particle exposure in workplaces and the general environment. Moreover, the journal recognizes that there are various situations where particles can pose a toxicological threat, such as the use of old materials in new applications or the introduction of new materials altogether. By encompassing all these disciplines, Particle and Fibre Toxicology provides a comprehensive source for research in this field.