Interpreting single-cell and spatial omics data using deep neural network training dynamics

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-12-04 DOI:10.1038/s43588-024-00721-5
Jonathan Karin, Reshef Mintz, Barak Raveh, Mor Nitzan
{"title":"Interpreting single-cell and spatial omics data using deep neural network training dynamics","authors":"Jonathan Karin, Reshef Mintz, Barak Raveh, Mor Nitzan","doi":"10.1038/s43588-024-00721-5","DOIUrl":null,"url":null,"abstract":"Single-cell and spatial omics datasets can be organized and interpreted by annotating single cells to distinct types, states, locations or phenotypes. However, cell annotations are inherently ambiguous, as discrete labels with subjective interpretations are assigned to heterogeneous cell populations on the basis of noisy, sparse and high-dimensional data. Here we developed Annotatability, a framework for identifying annotation mismatches and characterizing biological data structure by monitoring the dynamics and difficulty of training a deep neural network over such annotated data. Following this, we developed a signal-aware graph embedding method that enables downstream analysis of biological signals. This embedding captures cellular communities associated with target signals. Using Annotatability, we address key challenges in the interpretation of genomic data, demonstrated over eight single-cell RNA sequencing and spatial omics datasets, including identifying erroneous annotations and intermediate cell states, delineating developmental or disease trajectories, and capturing cellular heterogeneity. These results underscore the broad applicability of annotation-trainability analysis via Annotatability for unraveling cellular diversity and interpreting collective cell behaviors in health and disease. The Annotatability framework analyzes neural network training dynamics to interpret single-cell and spatial omics data. It identifies erroneous annotations and ambiguous cell states, infers trajectories from binary labels and enables signal-aware analysis.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 12","pages":"941-954"},"PeriodicalIF":12.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43588-024-00721-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00721-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell and spatial omics datasets can be organized and interpreted by annotating single cells to distinct types, states, locations or phenotypes. However, cell annotations are inherently ambiguous, as discrete labels with subjective interpretations are assigned to heterogeneous cell populations on the basis of noisy, sparse and high-dimensional data. Here we developed Annotatability, a framework for identifying annotation mismatches and characterizing biological data structure by monitoring the dynamics and difficulty of training a deep neural network over such annotated data. Following this, we developed a signal-aware graph embedding method that enables downstream analysis of biological signals. This embedding captures cellular communities associated with target signals. Using Annotatability, we address key challenges in the interpretation of genomic data, demonstrated over eight single-cell RNA sequencing and spatial omics datasets, including identifying erroneous annotations and intermediate cell states, delineating developmental or disease trajectories, and capturing cellular heterogeneity. These results underscore the broad applicability of annotation-trainability analysis via Annotatability for unraveling cellular diversity and interpreting collective cell behaviors in health and disease. The Annotatability framework analyzes neural network training dynamics to interpret single-cell and spatial omics data. It identifies erroneous annotations and ambiguous cell states, infers trajectories from binary labels and enables signal-aware analysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度神经网络训练动力学解释单细胞和空间组学数据。
单细胞组学和空间组学数据集可以通过将单细胞标注为不同的类型、状态、位置或表型来组织和解释。然而,细胞注释本质上是模糊的,因为在嘈杂、稀疏和高维数据的基础上,将带有主观解释的离散标签分配给异质细胞群体。在这里,我们开发了可注释性,这是一个通过监测在这些注释数据上训练深度神经网络的动态和难度来识别注释不匹配和表征生物数据结构的框架。在此之后,我们开发了一种信号感知图嵌入方法,可以对生物信号进行下游分析。这种嵌入捕捉与目标信号相关的细胞群落。利用可注释性,我们解决了基因组数据解释中的关键挑战,展示了超过8个单细胞RNA测序和空间组学数据集,包括识别错误注释和中间细胞状态,描绘发育或疾病轨迹,以及捕获细胞异质性。这些结果强调了注解可训练性分析在揭示细胞多样性和解释健康和疾病中的集体细胞行为方面的广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Based on the science, diversity matters Enhancing synthesis prediction via machine learning Harnessing large language models for data-scarce learning of polymer properties. A statistical framework for multi-trait rare variant analysis in large-scale whole-genome sequencing studies MultiSTAAR delivers multi-trait rare variant analysis of biobank-scale sequencing data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1