A hybrid EfficientNet-DbneAlexnet for brain tumor detection using MRI images.

Vasavi G, Vaddadi Vasudha Rani, Sreenu Ponnada, Jyothi S
{"title":"A hybrid EfficientNet-DbneAlexnet for brain tumor detection using MRI images.","authors":"Vasavi G, Vaddadi Vasudha Rani, Sreenu Ponnada, Jyothi S","doi":"10.1016/j.compbiolchem.2024.108279","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid growth of abnormal cells in the brain presents a serious risk to the health of humans as it can result in death. Since these tumors have a varied range of shapes, sizes, and positions, identifying Brain Tumors (BTs) is challenging. Magnetic Resonance Images (MRI) are most utilized for identifying malignant tumors. This paper develops a new approach, named EfficientNet-Deep batch normalized eLUAlexnet (EfficientNet-DbneAlexnet) for detecting BTs. Firstly, the input MRI image is transmitted for image enhancement. Here, the image is enhanced by the Piecewise Linear Transformation (PLT). After this, skull stripping is carried out, which is performed by the Fuzzy Local Information C Means (FLICM). Following this, the tumor area in the image is segmented with the help of a Projective Adversarial Network (PAN). The segmented image is later applied to the feature extraction module, wherein features like textural and statistical features are extracted. Finally, the BT detection is accomplished using the developed EfficientNet-DbneAlexnet, which is created by assimilating EfficientNet and Deep batch normalized eLUAlexnet (DbneAlexnet). The results demonstrate that EfficientNet-DbneAlexnet obtained a sensitivity of 90.36 %, accuracy of 92.77 %, and specificity of 91.82 %.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108279"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2024.108279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth of abnormal cells in the brain presents a serious risk to the health of humans as it can result in death. Since these tumors have a varied range of shapes, sizes, and positions, identifying Brain Tumors (BTs) is challenging. Magnetic Resonance Images (MRI) are most utilized for identifying malignant tumors. This paper develops a new approach, named EfficientNet-Deep batch normalized eLUAlexnet (EfficientNet-DbneAlexnet) for detecting BTs. Firstly, the input MRI image is transmitted for image enhancement. Here, the image is enhanced by the Piecewise Linear Transformation (PLT). After this, skull stripping is carried out, which is performed by the Fuzzy Local Information C Means (FLICM). Following this, the tumor area in the image is segmented with the help of a Projective Adversarial Network (PAN). The segmented image is later applied to the feature extraction module, wherein features like textural and statistical features are extracted. Finally, the BT detection is accomplished using the developed EfficientNet-DbneAlexnet, which is created by assimilating EfficientNet and Deep batch normalized eLUAlexnet (DbneAlexnet). The results demonstrate that EfficientNet-DbneAlexnet obtained a sensitivity of 90.36 %, accuracy of 92.77 %, and specificity of 91.82 %.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification and prediction of variants associated with hearing loss using sequence information in the vicinity of mutation sites. Development of a centrosome amplification-associated signature in kidney renal clear cell carcinoma based on multiple machine learning models. In-silico identification and validation of Silibinin as a dual inhibitor for ENO1 and GLUT4 to curtail EMT signaling and TNBC progression. Improving binding affinity prediction by emphasizing local features of drug and protein. Exploring immune gene expression and potential regulatory mechanisms in anaplastic thyroid carcinoma using a combination of single-cell and bulk RNA sequencing data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1