Integrative bioinformatics analysis of immune activation and gene networks in pediatric septic arthritis.

C V Elizondo-Solis, S E Rojas-Gutiérrez, R Martínez-Canales, A Montoya-Rosales, M F Hernández-García, C P Salazar-Cepeda, K J Ramírez, M Gelinas-Martín Del Campo, M C Salinas-Carmona, A G Rosas-Taraco, N Macías-Segura
{"title":"Integrative bioinformatics analysis of immune activation and gene networks in pediatric septic arthritis.","authors":"C V Elizondo-Solis, S E Rojas-Gutiérrez, R Martínez-Canales, A Montoya-Rosales, M F Hernández-García, C P Salazar-Cepeda, K J Ramírez, M Gelinas-Martín Del Campo, M C Salinas-Carmona, A G Rosas-Taraco, N Macías-Segura","doi":"10.1016/j.compbiolchem.2024.108287","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pediatric septic arthritis, driven by Staphylococcus aureus, leads to substantial morbidity due to the host's complex inflammatory response. This study integrates bioinformatics analyses to map the genomic and immune profiles of pediatric septic arthritis, aiming to identify key biomarkers and therapeutic targets.</p><p><strong>Methods: </strong>An integrative bioinformatics approach was adopted to analyze gene expression datasets from the GEO database, focusing on pediatric septic arthritis. DEGs were identified using GEO2R, and gene co-expression networks were generated via GeneMANIA. STRING database and Cytoscape software facilitated PPI network construction. DAVID enabled functional enrichment analysis to elucidate biological processes and pathways, while iRegulon predicted transcription factor regulation. CIBERSORT provided a detailed profile of immune cell alterations in the condition.</p><p><strong>Results: </strong>From the datasets analyzed, 576 DEGs were extracted, with 35 shared between the two datasets, revealing an innate immunity signature with notable hub genes such as MPO and ELANE, indicative of a pronounced neutrophilic response. Functional enrichment analysis highlighted pathways pertinent to antimicrobial defense and NET formation. Key transcription factors, including PBX1, POLR2A, and STAT3, were identified as potential modulators of these pathways. Immune profiling demonstrated significant shifts in cell populations, with increased plasma cells and reduced CD4+ naïve T cells.</p><p><strong>Conclusions: </strong>This study elucidates the complex genomic and immunological milieu of pediatric septic arthritis, uncovering potential biomarkers and signaling pathways for targeted therapeutic intervention. These findings underscore the preeminence of innate immune mechanisms in the disease's pathology and offer a foundation for future research to explore diagnostic and treatment innovations. Translation of these bioinformatics discoveries into clinical applications requires further validation and consideration of the limitations inherent to gene expression data and its interpretation.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108287"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2024.108287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pediatric septic arthritis, driven by Staphylococcus aureus, leads to substantial morbidity due to the host's complex inflammatory response. This study integrates bioinformatics analyses to map the genomic and immune profiles of pediatric septic arthritis, aiming to identify key biomarkers and therapeutic targets.

Methods: An integrative bioinformatics approach was adopted to analyze gene expression datasets from the GEO database, focusing on pediatric septic arthritis. DEGs were identified using GEO2R, and gene co-expression networks were generated via GeneMANIA. STRING database and Cytoscape software facilitated PPI network construction. DAVID enabled functional enrichment analysis to elucidate biological processes and pathways, while iRegulon predicted transcription factor regulation. CIBERSORT provided a detailed profile of immune cell alterations in the condition.

Results: From the datasets analyzed, 576 DEGs were extracted, with 35 shared between the two datasets, revealing an innate immunity signature with notable hub genes such as MPO and ELANE, indicative of a pronounced neutrophilic response. Functional enrichment analysis highlighted pathways pertinent to antimicrobial defense and NET formation. Key transcription factors, including PBX1, POLR2A, and STAT3, were identified as potential modulators of these pathways. Immune profiling demonstrated significant shifts in cell populations, with increased plasma cells and reduced CD4+ naïve T cells.

Conclusions: This study elucidates the complex genomic and immunological milieu of pediatric septic arthritis, uncovering potential biomarkers and signaling pathways for targeted therapeutic intervention. These findings underscore the preeminence of innate immune mechanisms in the disease's pathology and offer a foundation for future research to explore diagnostic and treatment innovations. Translation of these bioinformatics discoveries into clinical applications requires further validation and consideration of the limitations inherent to gene expression data and its interpretation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification and prediction of variants associated with hearing loss using sequence information in the vicinity of mutation sites. Development of a centrosome amplification-associated signature in kidney renal clear cell carcinoma based on multiple machine learning models. In-silico identification and validation of Silibinin as a dual inhibitor for ENO1 and GLUT4 to curtail EMT signaling and TNBC progression. Improving binding affinity prediction by emphasizing local features of drug and protein. Exploring immune gene expression and potential regulatory mechanisms in anaplastic thyroid carcinoma using a combination of single-cell and bulk RNA sequencing data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1