Feature Engineering for the Prediction of Scoliosis in 5q-Spinal Muscular Atrophy

IF 9.4 1区 医学 Q1 GERIATRICS & GERONTOLOGY Journal of Cachexia Sarcopenia and Muscle Pub Date : 2024-12-05 DOI:10.1002/jcsm.13599
Tu-Lan Vu-Han, Vikram Sunkara, Rodrigo Bermudez-Schettino, Jakob Schwechten, Robin Runge, Carsten Perka, Tobias Winkler, Sebastian Pokutta, Claudia Weiß, Matthias Pumberger
{"title":"Feature Engineering for the Prediction of Scoliosis in 5q-Spinal Muscular Atrophy","authors":"Tu-Lan Vu-Han,&nbsp;Vikram Sunkara,&nbsp;Rodrigo Bermudez-Schettino,&nbsp;Jakob Schwechten,&nbsp;Robin Runge,&nbsp;Carsten Perka,&nbsp;Tobias Winkler,&nbsp;Sebastian Pokutta,&nbsp;Claudia Weiß,&nbsp;Matthias Pumberger","doi":"10.1002/jcsm.13599","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>5q-Spinal muscular atrophy (SMA) is now one of the 5% treatable rare diseases worldwide. As disease-modifying therapies alter disease progression and patient phenotypes, paediatricians and consulting disciplines face new unknowns in their treatment decisions. Conclusions made from historical patient data sets are now mostly limited, and new approaches are needed to ensure our continued best standard-of-care practices for this exceptional patient group. Here, we present a data-driven machine learning approach to a rare disease data set to predict spinal muscular atrophy (SMA)-associated scoliosis.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We collected data from 84 genetically confirmed 5q-SMA patients who have received novel SMA therapies. We performed expert domain knowledge-directed feature engineering, correlation and predictive power score (PPS) analyses for feature selection. To test the predictive performance of the selected features, we trained a Random Forest Classifier and evaluated model performance using standard metrics.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The SMA data set consisted of 1304 visits and over 360 variables. We performed feature engineering for variables related to ‘interventions’, ‘devices’, ‘orthosis’, ‘ventilation’, ‘muscle contractures’ and ‘motor milestones’. Through correlation and PPS analysis paired with expert domain knowledge feature selection, we identified relevant features for scoliosis prediction in SMA that included disease progression markers: Hammersmith Functional Motor Scale Expanded ‘HFMSE’ (PPS = 0.27) and 6-Minute Walk Test ‘6MWT’ scores (PPS = 0.44), ‘age’ (PPS = 0.41) and ‘weight’ (PPS = 0.49), ‘contractures’ (PPS = 0.17), the use of ‘assistive devices’ (PPS = 0.39, ‘ventilation’ (PPS = 0.16) and the presence of ‘gastric tubes’ (PPS = 0.35) in SMA patients. These features were validated using expert domain knowledge and used to train a Random Forest Classifier with an observed accuracy of 0.82 and an average receiver operating characteristic (ROC) area of 0.87.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The introduction of disease-modifying SMA therapies, followed by the implementation of SMA in newborn screenings, has presented physicians with never-seen patients. We used feature engineering tools to overcome one of the main challenges when using data-driven approaches in rare disease data sets. Through predictive modelling of this data, we defined disease progression markers, which are easily assessed during patient visits and can help anticipate scoliosis onset. This highlights the importance of progressive features in the drug-induced revolution of this rare disease and further supports the ongoing efforts to update the SMA classification. We advocate for the consistent documentation of relevant progression markers, which will serve as a basis for data-driven models that physicians can use to update their best standard-of-care practices.</p>\n </section>\n </div>","PeriodicalId":48911,"journal":{"name":"Journal of Cachexia Sarcopenia and Muscle","volume":"16 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcsm.13599","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cachexia Sarcopenia and Muscle","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcsm.13599","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

5q-Spinal muscular atrophy (SMA) is now one of the 5% treatable rare diseases worldwide. As disease-modifying therapies alter disease progression and patient phenotypes, paediatricians and consulting disciplines face new unknowns in their treatment decisions. Conclusions made from historical patient data sets are now mostly limited, and new approaches are needed to ensure our continued best standard-of-care practices for this exceptional patient group. Here, we present a data-driven machine learning approach to a rare disease data set to predict spinal muscular atrophy (SMA)-associated scoliosis.

Methods

We collected data from 84 genetically confirmed 5q-SMA patients who have received novel SMA therapies. We performed expert domain knowledge-directed feature engineering, correlation and predictive power score (PPS) analyses for feature selection. To test the predictive performance of the selected features, we trained a Random Forest Classifier and evaluated model performance using standard metrics.

Results

The SMA data set consisted of 1304 visits and over 360 variables. We performed feature engineering for variables related to ‘interventions’, ‘devices’, ‘orthosis’, ‘ventilation’, ‘muscle contractures’ and ‘motor milestones’. Through correlation and PPS analysis paired with expert domain knowledge feature selection, we identified relevant features for scoliosis prediction in SMA that included disease progression markers: Hammersmith Functional Motor Scale Expanded ‘HFMSE’ (PPS = 0.27) and 6-Minute Walk Test ‘6MWT’ scores (PPS = 0.44), ‘age’ (PPS = 0.41) and ‘weight’ (PPS = 0.49), ‘contractures’ (PPS = 0.17), the use of ‘assistive devices’ (PPS = 0.39, ‘ventilation’ (PPS = 0.16) and the presence of ‘gastric tubes’ (PPS = 0.35) in SMA patients. These features were validated using expert domain knowledge and used to train a Random Forest Classifier with an observed accuracy of 0.82 and an average receiver operating characteristic (ROC) area of 0.87.

Conclusion

The introduction of disease-modifying SMA therapies, followed by the implementation of SMA in newborn screenings, has presented physicians with never-seen patients. We used feature engineering tools to overcome one of the main challenges when using data-driven approaches in rare disease data sets. Through predictive modelling of this data, we defined disease progression markers, which are easily assessed during patient visits and can help anticipate scoliosis onset. This highlights the importance of progressive features in the drug-induced revolution of this rare disease and further supports the ongoing efforts to update the SMA classification. We advocate for the consistent documentation of relevant progression markers, which will serve as a basis for data-driven models that physicians can use to update their best standard-of-care practices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
5q型脊髓性肌萎缩患者脊柱侧凸预测的特征工程
脊髓性肌萎缩症(SMA)目前是全球5%可治疗的罕见病之一。随着疾病修饰疗法改变疾病进展和患者表型,儿科医生和咨询学科在治疗决策中面临新的未知因素。从历史患者数据集得出的结论现在大多是有限的,需要新的方法来确保我们对这一特殊患者群体的持续最佳标准护理实践。在这里,我们提出了一种数据驱动的机器学习方法,用于罕见疾病数据集来预测脊髓性肌萎缩症(SMA)相关的脊柱侧凸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cachexia Sarcopenia and Muscle
Journal of Cachexia Sarcopenia and Muscle MEDICINE, GENERAL & INTERNAL-
CiteScore
13.30
自引率
12.40%
发文量
234
审稿时长
16 weeks
期刊介绍: The Journal of Cachexia, Sarcopenia and Muscle is a peer-reviewed international journal dedicated to publishing materials related to cachexia and sarcopenia, as well as body composition and its physiological and pathophysiological changes across the lifespan and in response to various illnesses from all fields of life sciences. The journal aims to provide a reliable resource for professionals interested in related research or involved in the clinical care of affected patients, such as those suffering from AIDS, cancer, chronic heart failure, chronic lung disease, liver cirrhosis, chronic kidney failure, rheumatoid arthritis, or sepsis.
期刊最新文献
GDF15 Neutralization Ameliorates Muscle Atrophy and Exercise Intolerance in a Mouse Model of Mitochondrial Myopathy The Impact of Radiation Dose on CT-Based Body Composition Analysis: A Large-Animal Study Weight Gain Among Cancer Patients Receiving Chemotherapy—Facts and Numbers SIRT6 Ameliorates Cancer Cachexia–Associated Adipose Wasting by Suppressing TNFR2 Signalling in Mice Low-Magnitude High-Frequency Vibration Attenuates Sarcopenia by Modulating Mitochondrial Quality Control via Inhibiting miR-378
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1