{"title":"Graph Linear Canonical Transform: Definition, Vertex-Frequency Analysis and Filter Design","authors":"Jian Yi Chen;Yu Zhang;Bing Zhao Li","doi":"10.1109/TSP.2024.3507787","DOIUrl":null,"url":null,"abstract":"This paper proposes a graph linear canonical transform (GLCT) by decomposing the linear canonical parameter matrix into fractional Fourier transform, scale transform, and chirp modulation for graph signal processing. The GLCT enables adjustable smoothing modes, enhancing alignment with graph signals. Leveraging traditional fractional domain time-frequency analysis, we investigate vertex-frequency analysis in the graph linear canonical domain, aiming to overcome limitations in capturing local information. Filter design methods, including optimal design and learning with stochastic gradient descent, are analyzed and applied to image classification tasks. The proposed GLCT and vertex-frequency analysis present innovative approaches to signal processing challenges, with potential applications in various fields.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"72 ","pages":"5691-5707"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10780968/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a graph linear canonical transform (GLCT) by decomposing the linear canonical parameter matrix into fractional Fourier transform, scale transform, and chirp modulation for graph signal processing. The GLCT enables adjustable smoothing modes, enhancing alignment with graph signals. Leveraging traditional fractional domain time-frequency analysis, we investigate vertex-frequency analysis in the graph linear canonical domain, aiming to overcome limitations in capturing local information. Filter design methods, including optimal design and learning with stochastic gradient descent, are analyzed and applied to image classification tasks. The proposed GLCT and vertex-frequency analysis present innovative approaches to signal processing challenges, with potential applications in various fields.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.