A conservative degree adaptive HDG method for transient incompressible flows

IF 4 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS International Journal of Numerical Methods for Heat & Fluid Flow Pub Date : 2024-12-06 DOI:10.1108/hff-09-2024-0651
Agustina Felipe, Ruben Sevilla, Oubay Hassan
{"title":"A conservative degree adaptive HDG method for transient incompressible flows","authors":"Agustina Felipe, Ruben Sevilla, Oubay Hassan","doi":"10.1108/hff-09-2024-0651","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to assess the accuracy of degree adaptive strategies in the context of incompressible Navier–Stokes flows using the high-order hybridisable discontinuous Galerkin (HDG) method.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The work presents a series of numerical examples to show the inability of standard degree adaptive processes to accurately capture aerodynamic quantities of interest, in particular the drag. A new conservative projection is proposed and the results between a standard degree adaptive procedure and the adaptive process enhanced with this correction are compared. The examples involve two transient problems where flow vortices or a gust needs to be accurately propagated over long distances.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The lack of robustness and accuracy of standard degree adaptive processes is linked to the violation of the free-divergence condition when projecting a solution from a space of polynomials of a given degree to a space of polynomials with a lower degree. Due to the coupling of velocity-pressure in incompressible flows, the violation of the incompressibility constraint leads to inaccurate pressure fields in the wake that have a sizeable effect on the drag. The new conservative projection proposed is found to remove all the numerical artefacts shown by the standard adaptive process.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This work proposes a new conservative projection for the degree adaptive process. The projection does not introduce a significant overhead because it requires to solve an element-by-element problem and only for those elements where the adaptive process lowers the degree of approximation. Numerical results show that, with the proposed projection, non-physical oscillations in the drag disappear and the results are in good agreement with reference solutions.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"37 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-09-2024-0651","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This study aims to assess the accuracy of degree adaptive strategies in the context of incompressible Navier–Stokes flows using the high-order hybridisable discontinuous Galerkin (HDG) method.

Design/methodology/approach

The work presents a series of numerical examples to show the inability of standard degree adaptive processes to accurately capture aerodynamic quantities of interest, in particular the drag. A new conservative projection is proposed and the results between a standard degree adaptive procedure and the adaptive process enhanced with this correction are compared. The examples involve two transient problems where flow vortices or a gust needs to be accurately propagated over long distances.

Findings

The lack of robustness and accuracy of standard degree adaptive processes is linked to the violation of the free-divergence condition when projecting a solution from a space of polynomials of a given degree to a space of polynomials with a lower degree. Due to the coupling of velocity-pressure in incompressible flows, the violation of the incompressibility constraint leads to inaccurate pressure fields in the wake that have a sizeable effect on the drag. The new conservative projection proposed is found to remove all the numerical artefacts shown by the standard adaptive process.

Originality/value

This work proposes a new conservative projection for the degree adaptive process. The projection does not introduce a significant overhead because it requires to solve an element-by-element problem and only for those elements where the adaptive process lowers the degree of approximation. Numerical results show that, with the proposed projection, non-physical oscillations in the drag disappear and the results are in good agreement with reference solutions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.50
自引率
11.90%
发文量
100
审稿时长
6-12 weeks
期刊介绍: The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf
期刊最新文献
Influence of radiative heat transfer on hybrid nanofluid across a curved surface with porous medium Optimizing bioconvective heat transfer with MHD Eyring–Powell nanofluids containing motile microorganisms with viscosity variability and porous media in ciliated microchannels Numerical research on two typical flow structures and aerodynamic drag characteristics of blunt-nosed trains Rayleigh-type wave in thermo-poroelastic media with dual-phase-lag heat conduction Entropy analysis of convective nanofluid flow with Brownian motion in an annular space between confocal elliptic cylinders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1