Effect of End-Tethered Methoxy-PEO Chain Density on Uremic Toxin Adsorption.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-12-06 DOI:10.1021/acsabm.4c01564
Ayda Ghahremanzadeh, Mehdi Ghaffari Sharaf, Marcello Tonelli, Larry D Unsworth
{"title":"Effect of End-Tethered Methoxy-PEO Chain Density on Uremic Toxin Adsorption.","authors":"Ayda Ghahremanzadeh, Mehdi Ghaffari Sharaf, Marcello Tonelli, Larry D Unsworth","doi":"10.1021/acsabm.4c01564","DOIUrl":null,"url":null,"abstract":"<p><p>In 2023, around 850 million people globally were affected by chronic kidney disease, which leads to the retention of uremic toxins and excess fluid in the blood. This study examines the adsorption of these toxins to poly(ethylene oxide) (PEO) films, known for their low-fouling properties. The gold surfaces were treated with 5 mM end-thiolated methoxy-terminated PEO (<i>m</i>-PEO) and analyzed using dynamic contact angle measurements, X-ray photoelectron spectroscopy, and spectroscopic ellipsometry to confirm the PEO film's presence and determine chain density. The adsorption of 25 different uremic toxins to <i>m</i>-PEO films was evaluated by using liquid chromatography-mass spectrometry (LC/MS), focusing on their binding affinity and adsorption dynamics. Results showed the effective modification of surfaces with <i>m</i>-PEO, with a notable change in contact angles and chain density (∼0.5 and 0.8 chains/nm<sup>2</sup>). Interestingly, pyruvic acid showed significant adsorption, whereas other toxins, such as hippuric acid, creatinine, and xanthosine had minimal interactions with the film. This indicates that the adsorption of these toxins is not primarily concentration driven and is rather dependent on the chemical structure of each toxin. These findings provide important insights for designing low-fouling coatings for biomedical devices.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In 2023, around 850 million people globally were affected by chronic kidney disease, which leads to the retention of uremic toxins and excess fluid in the blood. This study examines the adsorption of these toxins to poly(ethylene oxide) (PEO) films, known for their low-fouling properties. The gold surfaces were treated with 5 mM end-thiolated methoxy-terminated PEO (m-PEO) and analyzed using dynamic contact angle measurements, X-ray photoelectron spectroscopy, and spectroscopic ellipsometry to confirm the PEO film's presence and determine chain density. The adsorption of 25 different uremic toxins to m-PEO films was evaluated by using liquid chromatography-mass spectrometry (LC/MS), focusing on their binding affinity and adsorption dynamics. Results showed the effective modification of surfaces with m-PEO, with a notable change in contact angles and chain density (∼0.5 and 0.8 chains/nm2). Interestingly, pyruvic acid showed significant adsorption, whereas other toxins, such as hippuric acid, creatinine, and xanthosine had minimal interactions with the film. This indicates that the adsorption of these toxins is not primarily concentration driven and is rather dependent on the chemical structure of each toxin. These findings provide important insights for designing low-fouling coatings for biomedical devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Correction to "Stable Porous Organic Cage Nanocapsules for pH-Responsive Anticancer Drug Delivery for Precise Tumor Therapy". Glycyrrhizic Acid-Loaded Poloxamer and HPMC-Based In Situ Forming Gel of Acacia Honey for Improved Wound Dressing: Formulation Optimization and Characterization for Wound Treatment. Inclusion of Cationic Amphiphilic Peptides in Fmoc-FF Generates Multicomponent Functional Hydrogels. Supramolecular Organic Framework that Enables Multifunctional Doxorubicin Delivery, Photofrin Post-treatment Phototoxicity Inhibition, and Heparin Neutralization. Ultrasensitive Electrochemiluminescence Aptamer Sensor Based on Ru@ZIF-Pd Cathode for Acetamiprid Detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1