Molecular-scale in-operando reconfigurable electronic hardware†

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nanoscale Horizons Pub Date : 2024-11-27 DOI:10.1039/D4NH00211C
Yulong Wang, Qian Zhang, Cameron Nickle, Ziyu Zhang, Andrea Leoncini, Dong-Chen Qi, Alessandro Borrini, Yingmei Han, Enrique del Barco, Damien Thompson and Christian A. Nijhuis
{"title":"Molecular-scale in-operando reconfigurable electronic hardware†","authors":"Yulong Wang, Qian Zhang, Cameron Nickle, Ziyu Zhang, Andrea Leoncini, Dong-Chen Qi, Alessandro Borrini, Yingmei Han, Enrique del Barco, Damien Thompson and Christian A. Nijhuis","doi":"10.1039/D4NH00211C","DOIUrl":null,"url":null,"abstract":"<p >It is challenging to reconfigure devices at molecular length scales. Here we report molecular junctions based on molecular switches that toggle stably and reliably between multiple operations to reconfigure electronic devices at molecular length scales. Rather than static on/off switches that always revert to the same state, our voltage-driven molecular device dynamically switches between high and low conduction states during six consecutive proton-coupled electron transfer steps. By changing the applied voltage, different states are accessed resulting in <em>in operando</em> reconfigurable electronic functionalities of variable resistor, diode, memory, and NDR (negative differential conductance). The switching behavior is voltage driven but also has time-dependent features making it possible to access different memory states. This multi-functional switch represents molecular scale hardware operable in solid-state devices (in the form of electrode–monolayer–electrode junctions) that are interesting for areas of research where it is important to have access to time-dependent changes such as brain-inspired (or neuromorphic) electronics.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 2","pages":" 349-358"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623307/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nh/d4nh00211c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

It is challenging to reconfigure devices at molecular length scales. Here we report molecular junctions based on molecular switches that toggle stably and reliably between multiple operations to reconfigure electronic devices at molecular length scales. Rather than static on/off switches that always revert to the same state, our voltage-driven molecular device dynamically switches between high and low conduction states during six consecutive proton-coupled electron transfer steps. By changing the applied voltage, different states are accessed resulting in in operando reconfigurable electronic functionalities of variable resistor, diode, memory, and NDR (negative differential conductance). The switching behavior is voltage driven but also has time-dependent features making it possible to access different memory states. This multi-functional switch represents molecular scale hardware operable in solid-state devices (in the form of electrode–monolayer–electrode junctions) that are interesting for areas of research where it is important to have access to time-dependent changes such as brain-inspired (or neuromorphic) electronics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子级运行中的可重构电子硬件。
在分子长度尺度上重新配置器件是具有挑战性的。在这里,我们报告了基于分子开关的分子连接,该开关在多个操作之间稳定可靠地切换,以在分子长度尺度上重新配置电子器件。我们的电压驱动分子器件在六个连续的质子耦合电子转移步骤中动态地在高导和低导状态之间切换,而不是总是恢复到相同状态的静态开/关开关。通过改变施加的电压,可以访问不同的状态,从而实现可变电阻、二极管、存储器和NDR(负差分电导)的操作和可重构电子功能。开关行为是电压驱动的,但也有时间依赖的特征,使访问不同的记忆状态成为可能。这种多功能开关代表了在固态器件(以电极-单层电极连接的形式)中可操作的分子尺度硬件,这对于那些需要访问时间依赖性变化(如大脑启发(或神经形态)电子学)的研究领域很有趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
期刊最新文献
Engineering energy bands in 0D-2D hybrid photodetectors: Cu-doped InP quantum dots on a type-III SnSe2/MoTe2 heterojunction. Expression of concern: Electrothermal patches driving the transdermal delivery of insulin. One-dimensional molecular nanostructures interacting with two-dimensional metals. Expression of concern: Innovative transdermal delivery of insulin using gelatin methacrylate-based microneedle patches in mice and mini-pigs. Regulation of closed pores in hard carbon for enhanced electrochemical sodium storage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1