{"title":"5-Fluoro-2'-deoxyuridine as an efficient <sup>19</sup>F NMR reporter for G-quadruplex and i-motif structures.","authors":"Bhakti P Rout, Sarupa Roy, Seergazhi G Srivatsan","doi":"10.1016/j.bmcl.2024.130060","DOIUrl":null,"url":null,"abstract":"<p><p>DNA sequences that are composed of multiple G- and C-tracts can potentially form non-canonical structures called G-quadruplex (GQ) or i-motif (iM), respectively. Such sequences are found at the ends of chromosomes (telomeric repeats) and in the promoter region of several genes that cause cancer. Despite extensive studies, distinguishing different GQ and iM topologies is not easy. In this work, we have used one of the conservatively modified nucleoside analogs, namely 5-fluoro-2'-deoxyuridine (FdU) to study different GQ and iM structures of the human telomeric (H-Telo) DNA repeat sequence using <sup>19</sup>F NMR technique. The probe is minimally perturbing and distinguishes different GQ topologies by providing unique <sup>19</sup>F signatures. Our findings suggest that the telomeric repeat assumes hybrid-type GQ structures in intracellular ionic conditions as opposed to a parallel form predicted by using synthetic cellular crowding mimics. Further, with the incorporation of the probe into a C-rich H-Telo DNA ON, we were able to study the transition from iM structure to a random coil structure. Taken together, FdU is a promising probe, which could be used to determine the structure of non-canonical nucleic acid motifs in vitro and potentially in the native cellular environment.</p>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":" ","pages":"130060"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bmcl.2024.130060","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
DNA sequences that are composed of multiple G- and C-tracts can potentially form non-canonical structures called G-quadruplex (GQ) or i-motif (iM), respectively. Such sequences are found at the ends of chromosomes (telomeric repeats) and in the promoter region of several genes that cause cancer. Despite extensive studies, distinguishing different GQ and iM topologies is not easy. In this work, we have used one of the conservatively modified nucleoside analogs, namely 5-fluoro-2'-deoxyuridine (FdU) to study different GQ and iM structures of the human telomeric (H-Telo) DNA repeat sequence using 19F NMR technique. The probe is minimally perturbing and distinguishes different GQ topologies by providing unique 19F signatures. Our findings suggest that the telomeric repeat assumes hybrid-type GQ structures in intracellular ionic conditions as opposed to a parallel form predicted by using synthetic cellular crowding mimics. Further, with the incorporation of the probe into a C-rich H-Telo DNA ON, we were able to study the transition from iM structure to a random coil structure. Taken together, FdU is a promising probe, which could be used to determine the structure of non-canonical nucleic acid motifs in vitro and potentially in the native cellular environment.
期刊介绍:
Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.