Construction of spontaneous built-in electric field on heterointerface furnishing continuous efficient adsorption-directional migration-conversion of polysulfides.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-03-15 Epub Date: 2024-11-29 DOI:10.1016/j.jcis.2024.11.156
Junwei Xu, Shuai Wang, Haihui Zhou, Jiale Sun, Xuying Liu, Wei Feng, Tingting Guo, Yuancan Gao, Zhongyuan Huang
{"title":"Construction of spontaneous built-in electric field on heterointerface furnishing continuous efficient adsorption-directional migration-conversion of polysulfides.","authors":"Junwei Xu, Shuai Wang, Haihui Zhou, Jiale Sun, Xuying Liu, Wei Feng, Tingting Guo, Yuancan Gao, Zhongyuan Huang","doi":"10.1016/j.jcis.2024.11.156","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating sulfur with efficient electrocatalysts remains a pressing need in lithium-sulfur (Li-S) batteries for modulating the sluggish conversion kinetics and restricting the shuttle behavior of lithium polysulfides (LiPSs). Herein, a compact p-type Fe<sub>3</sub>O<sub>4</sub> and n-type MoS<sub>2</sub> heterostructure embedded on nitrogen-doped porous carbon (Fe<sub>3</sub>O<sub>4</sub>-MoS<sub>2</sub>-NPC-0.5) is meticulously constructed as dual-functional hosts that can facilitate continuous catalytic conversion of LiPSs. The p-type Fe<sub>3</sub>O<sub>4</sub> exhibits a high affinity for polysulfides, while n-type MoS<sub>2</sub> enables effective catalysis of LiPSs. The successful migration of LiPSs from Fe<sub>3</sub>O<sub>4</sub> to MoS<sub>2</sub> is bridged due to a spontaneous built-in electric field (BIEF) at the p-n heterojunction interface. The synergistic effect prevents the passivation of adsorption sites on Fe<sub>3</sub>O<sub>4</sub> and enhances the efficient catalytic conversion capabilities of MoS<sub>2</sub>. Consequently, the battery with Fe<sub>3</sub>O<sub>4</sub>-MoS<sub>2</sub>-NPC-0.5/S exhibits a prominent initial capacity of 1120.6 mAh g<sup>-1</sup> at 2 C, maintains outstanding cyclability with a capacity attenuation rate of 0.045 % per cycle at 0.5 C, and high sulfur utilization at large sulfur loadings. This work offers insights into optimizing the performance-enhanced Li-S battery electrodes by the formation of a dynamic \"trapping-directional migration-conversion\" reaction.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"491-501"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.11.156","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating sulfur with efficient electrocatalysts remains a pressing need in lithium-sulfur (Li-S) batteries for modulating the sluggish conversion kinetics and restricting the shuttle behavior of lithium polysulfides (LiPSs). Herein, a compact p-type Fe3O4 and n-type MoS2 heterostructure embedded on nitrogen-doped porous carbon (Fe3O4-MoS2-NPC-0.5) is meticulously constructed as dual-functional hosts that can facilitate continuous catalytic conversion of LiPSs. The p-type Fe3O4 exhibits a high affinity for polysulfides, while n-type MoS2 enables effective catalysis of LiPSs. The successful migration of LiPSs from Fe3O4 to MoS2 is bridged due to a spontaneous built-in electric field (BIEF) at the p-n heterojunction interface. The synergistic effect prevents the passivation of adsorption sites on Fe3O4 and enhances the efficient catalytic conversion capabilities of MoS2. Consequently, the battery with Fe3O4-MoS2-NPC-0.5/S exhibits a prominent initial capacity of 1120.6 mAh g-1 at 2 C, maintains outstanding cyclability with a capacity attenuation rate of 0.045 % per cycle at 0.5 C, and high sulfur utilization at large sulfur loadings. This work offers insights into optimizing the performance-enhanced Li-S battery electrodes by the formation of a dynamic "trapping-directional migration-conversion" reaction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异质界面自发内嵌电场的构建提供了多硫化物连续高效的吸附-定向迁移-转化。
在锂硫(li -硫)电池中,将硫与高效的电催化剂结合是调节锂多硫化物(LiPSs)缓慢转化动力学和限制其穿梭行为的迫切需要。本文精心构建了一种紧凑的p型Fe3O4和n型MoS2异质结构,包埋在氮掺杂多孔碳(Fe3O4-MoS2- npc -0.5)上,作为双功能载体,可以促进LiPSs的连续催化转化。p型Fe3O4对多硫化物具有较高的亲和力,而n型MoS2则能有效催化LiPSs。由于p-n异质结界面上的自发内置电场(BIEF), LiPSs成功地从Fe3O4迁移到MoS2。协同效应防止了Fe3O4吸附位点钝化,提高了MoS2的高效催化转化能力。结果表明,含Fe3O4-MoS2-NPC-0.5/S的电池在2 ℃下的初始容量为1120.6 mAh g-1,在0.5 ℃下的循环容量衰减率为0.045 %,具有良好的可循环性,并且在大硫负荷下具有较高的硫利用率。这项工作通过形成动态的“捕获-定向迁移-转换”反应,为优化性能增强的锂- s电池电极提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Efficient activation of peroxymonosulfate by Mo2TiC2Tx@Co for sustained emerging micropollutant removal: Mo vacancy-mediated activation in Fenton-like reactions. High-entropy NASICON-Type Li1.3Al0.4Ti0.5Zr0.5Sn0.5Ta0.1(PO4)3 with high electrochemical stability for lithium-ion batteries. Using reduced sericin as a green resist for precise pattern fabrication via water-based lithography. Atomically dispersed rare earth dysprosium-nitrogen-carbon for boosting oxygen reduction reaction. Liquid nitrogen quenching for efficient Bifunctional electrocatalysts in water Splitting: Achieving four key objectives in one step.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1