In situ growth of bismuth oxybromide/bismuth molybdate 2D/2D Z-scheme heterojunctions with rich interfacial oxygen vacancies for photocatalytic benzylic C(sp3)-H bond activation

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-11-30 DOI:10.1016/j.jcis.2024.11.233
Songting Gu , Chenyu Li , Xinyan Lin , Xiaotong Lin , Yingxi Xiao , Xiaoyang Zhao , Junmin Nan , Xin Xiao
{"title":"In situ growth of bismuth oxybromide/bismuth molybdate 2D/2D Z-scheme heterojunctions with rich interfacial oxygen vacancies for photocatalytic benzylic C(sp3)-H bond activation","authors":"Songting Gu ,&nbsp;Chenyu Li ,&nbsp;Xinyan Lin ,&nbsp;Xiaotong Lin ,&nbsp;Yingxi Xiao ,&nbsp;Xiaoyang Zhao ,&nbsp;Junmin Nan ,&nbsp;Xin Xiao","doi":"10.1016/j.jcis.2024.11.233","DOIUrl":null,"url":null,"abstract":"<div><div>The selective oxidation of toluene into valuable chemicals via photocatalytic C(sp<sup>3</sup>)-H bond activation represents a significant, yet challenging process. Here, the in situ construction of bismuth oxybromide/bismuth molybdate (BiOBr/Bi<sub>2</sub>MoO<sub>6</sub>) 2D/2D Z-scheme heterojunctions featuring interface-induced oxygen vacancies (OVs) is introduced. The optimized BiOBr/Bi<sub>2</sub>MoO<sub>6</sub> sample has a remarkable yield rate of benzaldehyde at 2134.28 μmol g<sup>−1</sup> h<sup>−1</sup> under blue LED irradiation, surpassing the performance of BiOBr and Bi<sub>2</sub>MoO<sub>6</sub> by 8.1 and 2.9 times, respectively. Insights from density functional theory (DFT) calculations, electron paramagnetic resonance (EPR), and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) studies highlight the critical role of the Z-scheme electronic configuration and OVs in attaining the superior photocatalytic toluene conversion efficiency. This study advances the photocatalytic conversion of benzaldehyde within an OV-enhanced direct Z-scheme system, facilitating the activation of inert C(sp<sup>3</sup>)-H bonds, and contributes to the development of high-performance catalysts for sustainable chemical processes.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"Pages 467-477"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724028200","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The selective oxidation of toluene into valuable chemicals via photocatalytic C(sp3)-H bond activation represents a significant, yet challenging process. Here, the in situ construction of bismuth oxybromide/bismuth molybdate (BiOBr/Bi2MoO6) 2D/2D Z-scheme heterojunctions featuring interface-induced oxygen vacancies (OVs) is introduced. The optimized BiOBr/Bi2MoO6 sample has a remarkable yield rate of benzaldehyde at 2134.28 μmol g−1 h−1 under blue LED irradiation, surpassing the performance of BiOBr and Bi2MoO6 by 8.1 and 2.9 times, respectively. Insights from density functional theory (DFT) calculations, electron paramagnetic resonance (EPR), and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) studies highlight the critical role of the Z-scheme electronic configuration and OVs in attaining the superior photocatalytic toluene conversion efficiency. This study advances the photocatalytic conversion of benzaldehyde within an OV-enhanced direct Z-scheme system, facilitating the activation of inert C(sp3)-H bonds, and contributes to the development of high-performance catalysts for sustainable chemical processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位生长的氧溴化铋/钼酸铋2D/2D z型异质结具有丰富的界面氧空位,用于光催化苯基C(sp3)-氢键活化。
通过光催化C(sp3)-氢键活化将甲苯选择性氧化成有价值的化学物质是一个重要但具有挑战性的过程。本文介绍了具有界面诱导氧空位(OVs)的氧化溴化铋/钼酸铋(BiOBr/Bi2MoO6) 2D/2D Z-scheme异质结的原位构建。优化后的BiOBr/Bi2MoO6样品在蓝光LED照射下苯甲醛的产率为2134.28 μmol g-1 h-1,分别是BiOBr和Bi2MoO6的8.1倍和2.9倍。密度泛函理论(DFT)计算、电子顺磁共振(EPR)和原位漫反射红外傅立叶变换光谱(DRIFTS)研究的见解强调了Z-scheme电子构型和OVs在获得优异光催化甲苯转化效率方面的关键作用。本研究在ov增强的直接Z-scheme体系中推进了苯甲醛的光催化转化,促进了惰性C(sp3)-H键的激活,并为可持续化学过程的高性能催化剂的开发做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1