Sexually dimorphic metabolic effects of a high fat diet on knee osteoarthritis in mice.

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Biology of Sex Differences Pub Date : 2024-12-05 DOI:10.1186/s13293-024-00680-6
Timothy M Griffin, Erika Barboza Prado Lopes, Dominic Cortassa, Albert Batushansky, Matlock A Jeffries, Dawid Makosa, Anita Jopkiewicz, Padmaja Mehta-D'souza, Ravi K Komaravolu, Michael T Kinter
{"title":"Sexually dimorphic metabolic effects of a high fat diet on knee osteoarthritis in mice.","authors":"Timothy M Griffin, Erika Barboza Prado Lopes, Dominic Cortassa, Albert Batushansky, Matlock A Jeffries, Dawid Makosa, Anita Jopkiewicz, Padmaja Mehta-D'souza, Ravi K Komaravolu, Michael T Kinter","doi":"10.1186/s13293-024-00680-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Women have a higher risk of developing osteoarthritis (OA) than men, including with obesity. To better understand this disparity, we investigated sex differences in metabolic and inflammatory factors associated with OA using a diet-induced mouse model of obesity. We hypothesized that 20 weeks of high-fat diet (HFD) would induce sexually dimorphic changes in both systemic and local risk factors of knee OA.</p><p><strong>Methods: </strong>Male and female C57BL/6J mice were fed Chow or HFD from 6 to 26 weeks of age (n = 12 per diet and sex). We performed broad metabolic phenotyping, 16 S gut microbiome analysis, targeted gene expression analysis of synovium-infrapatellar fat tissue, targeted gene expression and proteomic analysis of articular cartilage, chondrocyte metabolic profiling, and OA histopathology. Two-way ANOVA statistics were utilized to determine the contribution of sex and diet and their interaction on outcomes.</p><p><strong>Results: </strong>Mice fed HFD weighed 1.76-fold (p < 0.0001) and 1.60-fold (p < 0.0001) more than male and female Chow cohorts, respectively, with both sexes reaching similar body fat levels (male: 43.9 ± 2.2%; female: 44.1 ± 3.8%). HFD caused greater cartilage pathology (p < 0.024) and synovial hyperplasia (p < 0.038) versus Chow in both sexes. Cartilage pathology was greater in male versus female mice (p = 0.048), and only male mice developed osteophytes with HFD (p = 0.044). Both sexes exhibited metabolic inflexibility on HFD, but only male mice developed glucose intolerance (p < 0.0001), fatty liver (p < 0.0001), and elevated serum amylase (p < 0.0001) with HFD versus Chow. HFD treatment caused sex-dependent differences in gut microbiota beta diversity (p = 0.01) and alteration in specific microbiome clades, such as a HFD-dependent reduction in abundance of Bifidobacterium only in male mice. In knee synovium and infrapatellar fat tissue, HFD upregulated the expression of pro-inflammatory and pro-fibrotic genes predominantly in female mice. In cartilage, lipid metabolism proteins were more abundant with HFD in male mice, whereas proteins involved in glycolysis/gluconeogenesis and biosynthesis of amino acids were greater in cartilage of female mice. Sex-dependent metabolic differences were observed in cartilage from young, healthy mice prior to pubertal maturation, but not in primary juvenile chondrocytes studied in vitro.</p><p><strong>Conclusions: </strong>HFD induced numerous sex differences in metabolic and inflammatory outcomes, especially in joint tissues, suggesting that sex-specific cellular processes are involved during development of early-stage OA with obesity.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"103"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619521/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Sex Differences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13293-024-00680-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Women have a higher risk of developing osteoarthritis (OA) than men, including with obesity. To better understand this disparity, we investigated sex differences in metabolic and inflammatory factors associated with OA using a diet-induced mouse model of obesity. We hypothesized that 20 weeks of high-fat diet (HFD) would induce sexually dimorphic changes in both systemic and local risk factors of knee OA.

Methods: Male and female C57BL/6J mice were fed Chow or HFD from 6 to 26 weeks of age (n = 12 per diet and sex). We performed broad metabolic phenotyping, 16 S gut microbiome analysis, targeted gene expression analysis of synovium-infrapatellar fat tissue, targeted gene expression and proteomic analysis of articular cartilage, chondrocyte metabolic profiling, and OA histopathology. Two-way ANOVA statistics were utilized to determine the contribution of sex and diet and their interaction on outcomes.

Results: Mice fed HFD weighed 1.76-fold (p < 0.0001) and 1.60-fold (p < 0.0001) more than male and female Chow cohorts, respectively, with both sexes reaching similar body fat levels (male: 43.9 ± 2.2%; female: 44.1 ± 3.8%). HFD caused greater cartilage pathology (p < 0.024) and synovial hyperplasia (p < 0.038) versus Chow in both sexes. Cartilage pathology was greater in male versus female mice (p = 0.048), and only male mice developed osteophytes with HFD (p = 0.044). Both sexes exhibited metabolic inflexibility on HFD, but only male mice developed glucose intolerance (p < 0.0001), fatty liver (p < 0.0001), and elevated serum amylase (p < 0.0001) with HFD versus Chow. HFD treatment caused sex-dependent differences in gut microbiota beta diversity (p = 0.01) and alteration in specific microbiome clades, such as a HFD-dependent reduction in abundance of Bifidobacterium only in male mice. In knee synovium and infrapatellar fat tissue, HFD upregulated the expression of pro-inflammatory and pro-fibrotic genes predominantly in female mice. In cartilage, lipid metabolism proteins were more abundant with HFD in male mice, whereas proteins involved in glycolysis/gluconeogenesis and biosynthesis of amino acids were greater in cartilage of female mice. Sex-dependent metabolic differences were observed in cartilage from young, healthy mice prior to pubertal maturation, but not in primary juvenile chondrocytes studied in vitro.

Conclusions: HFD induced numerous sex differences in metabolic and inflammatory outcomes, especially in joint tissues, suggesting that sex-specific cellular processes are involved during development of early-stage OA with obesity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高脂肪饮食对小鼠膝关节骨关节炎的两性二态代谢影响。
背景:女性患骨关节炎(OA)的风险高于男性,包括肥胖。为了更好地理解这种差异,我们使用饮食诱导的肥胖小鼠模型研究了与OA相关的代谢和炎症因子的性别差异。我们假设20周的高脂肪饮食(HFD)会导致膝关节OA的全身和局部危险因素发生性二态变化。方法:雄性和雌性C57BL/6J小鼠于6 ~ 26周龄饲喂Chow或HFD,每日粮和性别各12只。我们进行了广泛的代谢表型分析、16s肠道微生物组分析、滑膜-髌下脂肪组织的靶向基因表达分析、关节软骨的靶向基因表达和蛋白质组学分析、软骨细胞代谢谱和OA组织病理学。使用双向方差分析统计来确定性别和饮食的贡献及其对结果的相互作用。结论:HFD在代谢和炎症结果方面引起了许多性别差异,特别是在关节组织中,这表明性别特异性细胞过程参与了早期OA合并肥胖的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology of Sex Differences
Biology of Sex Differences ENDOCRINOLOGY & METABOLISM-GENETICS & HEREDITY
CiteScore
12.10
自引率
1.30%
发文量
69
审稿时长
14 weeks
期刊介绍: Biology of Sex Differences is a unique scientific journal focusing on sex differences in physiology, behavior, and disease from molecular to phenotypic levels, incorporating both basic and clinical research. The journal aims to enhance understanding of basic principles and facilitate the development of therapeutic and diagnostic tools specific to sex differences. As an open-access journal, it is the official publication of the Organization for the Study of Sex Differences and co-published by the Society for Women's Health Research. Topical areas include, but are not limited to sex differences in: genomics; the microbiome; epigenetics; molecular and cell biology; tissue biology; physiology; interaction of tissue systems, in any system including adipose, behavioral, cardiovascular, immune, muscular, neural, renal, and skeletal; clinical studies bearing on sex differences in disease or response to therapy.
期刊最新文献
Sex differences research is important! Breaking rules: the complex relationship between DNA methylation and X-chromosome inactivation in the human placenta. Sex differences in the microglial response to stress and chronic alcohol exposure in mice. Sex-dependent effects of a high-fat diet on the hypothalamic response in mice. Sex differences in romantic love: an evolutionary perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1