Rong Wang , Yunxi Liu , Mingqi Liu , Meng Zhang , Chaoqun Li , Shanshan Xu , Sangsang Tang , Yidan Ma , Xiaodong Wu , Weidong Fei
{"title":"Combating tumor PARP inhibitor resistance: Combination treatments, nanotechnology, and other potential strategies","authors":"Rong Wang , Yunxi Liu , Mingqi Liu , Meng Zhang , Chaoqun Li , Shanshan Xu , Sangsang Tang , Yidan Ma , Xiaodong Wu , Weidong Fei","doi":"10.1016/j.ijpharm.2024.125028","DOIUrl":null,"url":null,"abstract":"<div><div>PARP (poly (ADP-ribose) polymerase) inhibitors (PARPi) have demonstrated significant potential in cancer treatment, particularly in tumors with breast cancer susceptibility gene (BRCA) mutations and other DNA repair deficiencies. However, the development of resistance to PARPi has become a major challenge in their clinical application. The emergence of drug resistance leads to reduced efficacy of the PARPi over time, impacting long-term treatment outcomes and survival rates. PARPi resistance in tumors often arises as cells activate alternative DNA repair pathways or evade the effect of PARPi, diminishing therapeutic effectiveness. Consequently, overcoming resistance is crucial for maintaining treatment efficacy and improving patient prognosis. This paper reviews the strategies to overcome PARPi resistance through combination treatment and nanotechnology therapy. We first review the current combination therapies with PARPi, including anti-angiogenic therapies, radiotherapies, immunotherapies, and chemotherapies, and elucidate their mechanisms for overcoming PARPi resistance. Additionally, this paper focuses on the application of nanotechnology in improving the effectiveness of PARPi and overcoming drug resistance. Subsequently, this paper presents several promising strategies to tackle PARPi resistance, including but not limited to: structural modifications of PARPi, deployment of gene editing systems, implementation of “membrane lipid therapy,” and modulation of cellular metabolism in tumors. By integrating these strategies, this research will provide comprehensive approaches to overcome the resistance of PARPi in cancer treatment and offer guidance for future research and clinical practice.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"669 ","pages":"Article 125028"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324012626","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
PARP (poly (ADP-ribose) polymerase) inhibitors (PARPi) have demonstrated significant potential in cancer treatment, particularly in tumors with breast cancer susceptibility gene (BRCA) mutations and other DNA repair deficiencies. However, the development of resistance to PARPi has become a major challenge in their clinical application. The emergence of drug resistance leads to reduced efficacy of the PARPi over time, impacting long-term treatment outcomes and survival rates. PARPi resistance in tumors often arises as cells activate alternative DNA repair pathways or evade the effect of PARPi, diminishing therapeutic effectiveness. Consequently, overcoming resistance is crucial for maintaining treatment efficacy and improving patient prognosis. This paper reviews the strategies to overcome PARPi resistance through combination treatment and nanotechnology therapy. We first review the current combination therapies with PARPi, including anti-angiogenic therapies, radiotherapies, immunotherapies, and chemotherapies, and elucidate their mechanisms for overcoming PARPi resistance. Additionally, this paper focuses on the application of nanotechnology in improving the effectiveness of PARPi and overcoming drug resistance. Subsequently, this paper presents several promising strategies to tackle PARPi resistance, including but not limited to: structural modifications of PARPi, deployment of gene editing systems, implementation of “membrane lipid therapy,” and modulation of cellular metabolism in tumors. By integrating these strategies, this research will provide comprehensive approaches to overcome the resistance of PARPi in cancer treatment and offer guidance for future research and clinical practice.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.