Time domain NMR for polymorphism characterization: Current status and future perspectives

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2025-01-25 DOI:10.1016/j.ijpharm.2024.125027
Luisa Souza Almeida , Jaqueline Carneiro , Luiz Alberto Colnago
{"title":"Time domain NMR for polymorphism characterization: Current status and future perspectives","authors":"Luisa Souza Almeida ,&nbsp;Jaqueline Carneiro ,&nbsp;Luiz Alberto Colnago","doi":"10.1016/j.ijpharm.2024.125027","DOIUrl":null,"url":null,"abstract":"<div><div>Polymorphism is the ability of a compound to exist in multiple crystal forms while maintaining the same chemical composition. This phenomenon is reflected in different solid-state physicochemical properties due to variations in structural energy and the degree of lattice disorder. The pharmaceutical industry places significant emphasis on thoroughly characterizing polymorphism in Active Pharmaceutical Ingredients (APIs) because of its impact on the pharmacokinetic properties on the final medicine product. Standard characterization techniques are well documented in pharmacopeias and by international agencies. These techniques, whether applied individually or in combination, include crystallography (X-Ray Diffraction), thermal analysis (Differential Scanning Calorimetry), and various forms of spectroscopy, such as Near-Infrared, Raman, and solid-state Nuclear Magnetic Resonance (NMR). Analyzing NMR applications for solid-state characterization over the past five years, there has been a growing number of reports on the use of Time Domain NMR (TD-NMR) to evaluate polymorphism on APIs. Due to the increasing interest in this compelling technique, this study provides an overview of the current advancements in TD-NMR for polymorphism assessment in pharmaceutical products. Compared to high-field devices, TD-NMR has proven to be more convenient to industrial applications due to its smaller equipment size and shorter measurement times. This mini-review compares various applications of TD-NMR for API solid-state characterization and offer guidance for future research in this area.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"669 ","pages":"Article 125027"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324012614","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymorphism is the ability of a compound to exist in multiple crystal forms while maintaining the same chemical composition. This phenomenon is reflected in different solid-state physicochemical properties due to variations in structural energy and the degree of lattice disorder. The pharmaceutical industry places significant emphasis on thoroughly characterizing polymorphism in Active Pharmaceutical Ingredients (APIs) because of its impact on the pharmacokinetic properties on the final medicine product. Standard characterization techniques are well documented in pharmacopeias and by international agencies. These techniques, whether applied individually or in combination, include crystallography (X-Ray Diffraction), thermal analysis (Differential Scanning Calorimetry), and various forms of spectroscopy, such as Near-Infrared, Raman, and solid-state Nuclear Magnetic Resonance (NMR). Analyzing NMR applications for solid-state characterization over the past five years, there has been a growing number of reports on the use of Time Domain NMR (TD-NMR) to evaluate polymorphism on APIs. Due to the increasing interest in this compelling technique, this study provides an overview of the current advancements in TD-NMR for polymorphism assessment in pharmaceutical products. Compared to high-field devices, TD-NMR has proven to be more convenient to industrial applications due to its smaller equipment size and shorter measurement times. This mini-review compares various applications of TD-NMR for API solid-state characterization and offer guidance for future research in this area.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多态表征的时域核磁共振:现状和未来展望。
多态是指化合物在保持相同化学成分的情况下以多种晶体形式存在的能力。由于结构能和晶格无序程度的变化,这种现象反映在不同的固态物理化学性质上。制药行业非常重视对活性药物成分(api)多态性的彻底表征,因为它对最终药品的药代动力学特性有影响。标准表征技术在药典和国际机构中有很好的记录。这些技术,无论是单独应用还是组合应用,包括晶体学(x射线衍射)、热分析(差示扫描量热法)和各种形式的光谱学,如近红外、拉曼和固态核磁共振(NMR)。在过去的五年中,分析核磁共振在固态表征方面的应用,有越来越多的报道使用时域核磁共振(TD-NMR)来评估api的多态性。由于对这一引人注目的技术的兴趣日益增加,本研究概述了TD-NMR用于药物产品多态性评估的当前进展。与高场设备相比,由于其更小的设备尺寸和更短的测量时间,TD-NMR已被证明更方便于工业应用。这篇综述比较了TD-NMR在原料药固态表征中的各种应用,并为该领域的未来研究提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Follicle-stimulating hormone peptide-conjugated liposomes in the treatment of epithelial ovarian cancer through the induction of M2-to-M1 macrophage repolarization. Harnessing the power of inorganic nanoparticles for the management of TNBC. Stability and recrystallization of amorphous solid dispersions prepared by hot-melt extrusion and spray drying. Targeted nasal delivery of LNP-mRNAs aerosolised by Rayleigh breakup technology. Challenges and opportunities in targeting epigenetic mechanisms for pulmonary arterial hypertension treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1