Semi-mechanistic population pharmacokinetic modeling of DZIF-10c, a neutralizing antibody against SARS-Cov-2: predicting systemic and lung exposure following inhaled and intravenous administration.

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY Journal of Pharmacokinetics and Pharmacodynamics Pub Date : 2024-12-05 DOI:10.1007/s10928-024-09947-2
Sree Kurup, Nieves Velez de Mendizabal, Stephan Becker, Erica Bolella, Dorothy De Sousa, Gerd Fätkenheuer, Henning Gruell, Florian Klein, Jakob J Malin, Ulrike Schmid, Julia Korell
{"title":"Semi-mechanistic population pharmacokinetic modeling of DZIF-10c, a neutralizing antibody against SARS-Cov-2: predicting systemic and lung exposure following inhaled and intravenous administration.","authors":"Sree Kurup, Nieves Velez de Mendizabal, Stephan Becker, Erica Bolella, Dorothy De Sousa, Gerd Fätkenheuer, Henning Gruell, Florian Klein, Jakob J Malin, Ulrike Schmid, Julia Korell","doi":"10.1007/s10928-024-09947-2","DOIUrl":null,"url":null,"abstract":"<p><p>DZIF-10c (BI 767551) is a recombinant human monoclonal antibody of the IgG1 kappa isotype. It acts as a SARS-CoV-2 neutralizing antibody. DZIF-10c has been developed for both systemic exposure by intravenous infusion as well as for specific exposure to the respiratory tract by application as an inhaled aerosol generated by a nebulizer. An integrated preclinical/clinical semi-mechanistic population pharmacokinetic model was developed to characterize the exposure profile of DZIF-10c in the systemic circulation and lungs. To inform and reduce uncertainty around exposure in the lungs following different methods of dosing, preclinical cynomolgus monkey data was combined with human data using allometric scaling principles. Human serum concentrations of DZIF-10c from two clinical trials were combined with serum/plasma and lung epithelial lining fluid (ELF) concentrations from three preclinical studies to characterize the relationship between dosing, serum/plasma, and lung exposure. The final model was used to predict exposure in the lungs following different routes of administration. Simulations showed that inhalation provides immediate and relevant exposure in the lung ELF at a much lower dose compared with an infusion. Combining inhalation with intravenous therapy results in high and sustained DZIF-10c exposure in the lungs and systemic circulation, thereby combining the benefits of both routes of administration. By combining preclinical data with clinical data (via allometric scaling principles), the developed population pharmacokinetic model reduced uncertainty around exposure in the lungs allowing evaluation of alternative dosing strategies to achieve the desired concentrations of DZIF-10c in human lungs.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 1","pages":"3"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-024-09947-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

DZIF-10c (BI 767551) is a recombinant human monoclonal antibody of the IgG1 kappa isotype. It acts as a SARS-CoV-2 neutralizing antibody. DZIF-10c has been developed for both systemic exposure by intravenous infusion as well as for specific exposure to the respiratory tract by application as an inhaled aerosol generated by a nebulizer. An integrated preclinical/clinical semi-mechanistic population pharmacokinetic model was developed to characterize the exposure profile of DZIF-10c in the systemic circulation and lungs. To inform and reduce uncertainty around exposure in the lungs following different methods of dosing, preclinical cynomolgus monkey data was combined with human data using allometric scaling principles. Human serum concentrations of DZIF-10c from two clinical trials were combined with serum/plasma and lung epithelial lining fluid (ELF) concentrations from three preclinical studies to characterize the relationship between dosing, serum/plasma, and lung exposure. The final model was used to predict exposure in the lungs following different routes of administration. Simulations showed that inhalation provides immediate and relevant exposure in the lung ELF at a much lower dose compared with an infusion. Combining inhalation with intravenous therapy results in high and sustained DZIF-10c exposure in the lungs and systemic circulation, thereby combining the benefits of both routes of administration. By combining preclinical data with clinical data (via allometric scaling principles), the developed population pharmacokinetic model reduced uncertainty around exposure in the lungs allowing evaluation of alternative dosing strategies to achieve the desired concentrations of DZIF-10c in human lungs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
期刊最新文献
Novel endpoints based on tumor size ratio to support early clinical decision-making in oncology drug-development. Translational pharmacokinetic and pharmacodynamic modelling of the anti-ADAMTS-5 NANOBODY® (M6495) using the neo-epitope ARGS as a biomarker. QSP modeling of a transiently inactivating antibody-drug conjugate highlights benefit of short antibody half life. A PopPBPK-RL approach for precision dosing of benazepril in renal impaired patients. Comparison of the power and type 1 error of total score models for drug effect detection in clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1