Tungsten oxide nanowire clusters anchored on porous carbon fibers as a sulfur redox mediator for lithium–sulfur batteries†

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Advances Pub Date : 2024-11-24 DOI:10.1039/D4NA00829D
Tongzhen Wang, Xiaofei Zhang, Jie Yang, Jiewu Cui, Jian Yan, Jiaqin Liu and Yucheng Wu
{"title":"Tungsten oxide nanowire clusters anchored on porous carbon fibers as a sulfur redox mediator for lithium–sulfur batteries†","authors":"Tongzhen Wang, Xiaofei Zhang, Jie Yang, Jiewu Cui, Jian Yan, Jiaqin Liu and Yucheng Wu","doi":"10.1039/D4NA00829D","DOIUrl":null,"url":null,"abstract":"<p >Addressing the sluggish redox kinetics of sulfur electrodes and mitigating the shuttle effect of intermediate lithium polysulfides (LiPS) are crucial for the advancement of high-energy lithium–sulfur batteries. Here, we introduce a pioneering flexible self-supporting composite scaffold that incorporates tungsten oxide nanowire clusters anchored on core–shell porous carbon fibers (WO<small><sub>3</sub></small>/PCF) for sulfur accommodation. The core of PCF serves as a robust electrode supporting scaffold, whereas the porous shell of PCF provides a 3D interconnected conductive network to accommodate sulfur, restrain polysulfide diffusion and buffer electrode expansion. The WO<small><sub>3</sub></small> nanowire clusters not only entrap polysulfides but also function as a redox mediator to promote sulfur conversion, thus greatly mitigating the shuttle effect and boosting redox kinetics. The unique core–shell porous structure of PCF and the dual functionality of WO<small><sub>3</sub></small> for LiPS capture and conversion contribute to the high capacity, exceptional cycling stability, and superior rate capability of the WO<small><sub>3</sub></small>/PCF/S cathode. Impressively, at a sulfur loading of 3.0 mg cm<small><sup>−2</sup></small>, it achieves an initial capacity of 1082 mA h·g<small><sup>−1</sup></small> at 1 C with an ultralow decay rate of 0.039% over 1000 cycles. Even under a high sulfur loading of 6.1 mg cm<small><sup>−2</sup></small>, it maintains a reversible capacity of 536 mA h·g<small><sup>−1</sup></small> after 1000 cycles with a decay rate of only 0.043% at 0.5 C.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" 2","pages":" 506-516"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/na/d4na00829d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Addressing the sluggish redox kinetics of sulfur electrodes and mitigating the shuttle effect of intermediate lithium polysulfides (LiPS) are crucial for the advancement of high-energy lithium–sulfur batteries. Here, we introduce a pioneering flexible self-supporting composite scaffold that incorporates tungsten oxide nanowire clusters anchored on core–shell porous carbon fibers (WO3/PCF) for sulfur accommodation. The core of PCF serves as a robust electrode supporting scaffold, whereas the porous shell of PCF provides a 3D interconnected conductive network to accommodate sulfur, restrain polysulfide diffusion and buffer electrode expansion. The WO3 nanowire clusters not only entrap polysulfides but also function as a redox mediator to promote sulfur conversion, thus greatly mitigating the shuttle effect and boosting redox kinetics. The unique core–shell porous structure of PCF and the dual functionality of WO3 for LiPS capture and conversion contribute to the high capacity, exceptional cycling stability, and superior rate capability of the WO3/PCF/S cathode. Impressively, at a sulfur loading of 3.0 mg cm−2, it achieves an initial capacity of 1082 mA h·g−1 at 1 C with an ultralow decay rate of 0.039% over 1000 cycles. Even under a high sulfur loading of 6.1 mg cm−2, it maintains a reversible capacity of 536 mA h·g−1 after 1000 cycles with a decay rate of only 0.043% at 0.5 C.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固定在多孔碳纤维上的氧化钨纳米线簇作为锂硫电池的硫氧化还原介质。
解决硫电极缓慢的氧化还原动力学和减轻中间多硫化物锂(LiPS)的穿梭效应对高能锂硫电池的发展至关重要。在这里,我们介绍了一种开创性的柔性自支撑复合支架,该支架将氧化钨纳米线簇固定在核壳多孔碳纤维(WO3/PCF)上,用于容纳硫。PCF的核心是一个坚固的电极支撑支架,而PCF的多孔外壳提供了一个三维互连的导电网络,以容纳硫,抑制多硫扩散和缓冲电极膨胀。WO3纳米线簇不仅可以捕获多硫化物,还可以作为氧化还原介质促进硫的转化,从而大大减轻了穿梭效应,提高了氧化还原动力学。PCF独特的核壳多孔结构和WO3对LiPS捕获和转化的双重功能,使得WO3/PCF/S阴极具有高容量、优异的循环稳定性和优越的倍率性能。令人印象深刻的是,在3.0 mg cm-2的硫负荷下,它在1℃下的初始容量为1082 mA h·g-1, 1000次循环的超低衰减率为0.039%。即使在6.1 mg cm-2的高硫负荷下,循环1000次后仍保持536 mA h·g-1的可逆容量,0.5℃下的衰减率仅为0.043%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
期刊最新文献
Shape-tailored semiconductor dot-in-rods: optimizing CdS-shell growth for enhanced chiroptical properties via the rationalization of the role of temperature and time. Synergetic efficiency: in situ growth of a novel 2D/2D chemically bonded Bi2O3/Cs3Bi2Br9 S-scheme heterostructure for improved photocatalytic performance and stability. Chemical etching of silicon assisted by graphene oxide under negative electric bias. Emerging engineered nanozymes: current status and future perspectives in cancer treatments. Construction of an MXene/MIL Fe-53/ZIF-67 derived bifunctional electrocatalyst for efficient overall water splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1