Renjie Zuo, Quan Liao, Ziwei Ye, Chenchun Ding, Zhenzhen Guo, Junjie He, Guoyan Liu
{"title":"Antler blood enhances the ability of stem cell-derived exosomes to promote bone and vascular regeneration.","authors":"Renjie Zuo, Quan Liao, Ziwei Ye, Chenchun Ding, Zhenzhen Guo, Junjie He, Guoyan Liu","doi":"10.1016/j.reth.2024.11.003","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bone marrow mesenchymal stem cells (BMSC)-derived exosomes (Exos) are important in promoting bone and vascular regeneration. Antler blood (ALB) is a valuable traditional Chinese medicine with potent regenerative effects. However, there is still a lack of clarity regarding the relationship between ALB and BMSC-Exos.</p><p><strong>Methods: </strong>Primary BMSCs were isolated from SD Rats, and BMSC-derived Exos (BMSC-Exos) were harvested and identified accordingly. ALB was treated with the solution contained pepsin and hydrochloric acid to simulated gastrointestinal digestion <i>in vitro</i>. Furthermore, the liquid chromatography-mass spectrometry (LC-MS) was performed to determine the components of digested ALB. Moreover, ALB was utilized to intervene on BMSCs to produce specialized Exos (Exos-ALB), of which the angiogenesis functions were detected both <i>in vitro</i> and <i>in vivo</i>. For the potential mechanism, both high-throughput sequencing and proteomics were performed.</p><p><strong>Results: </strong>The main components of ALB consist of amino acids and peptides. Both ALB and BMSC-Exos exhibited significant promotion of bone and blood vessel formation, respectively. Moreover, ALB and BMSC-Exos could increase the expression of BMP-2, RUNX2, and ALP, but reduce the Osteopontin (OPN) expression. Notably, Exos-ALB exhibited the strongest performance in these functions, whereas the presence of miR-21-5p inhibitor can partially counteract the effects of Exos-ALB. The proteomics reveal differential genes associated with bone minimization, angiogenesis, osteoblast differentiation, vesicle-mediated transport, and the Wnt signaling pathway.</p><p><strong>Conclusion: </strong>ALB enhances the ability of BMSCs-derived Exos to promote bone and vascular regeneration, which may be related to the up-regulation of miR-21-5p.</p>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"1168-1180"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617708/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.reth.2024.11.003","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Bone marrow mesenchymal stem cells (BMSC)-derived exosomes (Exos) are important in promoting bone and vascular regeneration. Antler blood (ALB) is a valuable traditional Chinese medicine with potent regenerative effects. However, there is still a lack of clarity regarding the relationship between ALB and BMSC-Exos.
Methods: Primary BMSCs were isolated from SD Rats, and BMSC-derived Exos (BMSC-Exos) were harvested and identified accordingly. ALB was treated with the solution contained pepsin and hydrochloric acid to simulated gastrointestinal digestion in vitro. Furthermore, the liquid chromatography-mass spectrometry (LC-MS) was performed to determine the components of digested ALB. Moreover, ALB was utilized to intervene on BMSCs to produce specialized Exos (Exos-ALB), of which the angiogenesis functions were detected both in vitro and in vivo. For the potential mechanism, both high-throughput sequencing and proteomics were performed.
Results: The main components of ALB consist of amino acids and peptides. Both ALB and BMSC-Exos exhibited significant promotion of bone and blood vessel formation, respectively. Moreover, ALB and BMSC-Exos could increase the expression of BMP-2, RUNX2, and ALP, but reduce the Osteopontin (OPN) expression. Notably, Exos-ALB exhibited the strongest performance in these functions, whereas the presence of miR-21-5p inhibitor can partially counteract the effects of Exos-ALB. The proteomics reveal differential genes associated with bone minimization, angiogenesis, osteoblast differentiation, vesicle-mediated transport, and the Wnt signaling pathway.
Conclusion: ALB enhances the ability of BMSCs-derived Exos to promote bone and vascular regeneration, which may be related to the up-regulation of miR-21-5p.
期刊介绍:
Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine.
Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.