Antler blood enhances the ability of stem cell-derived exosomes to promote bone and vascular regeneration.

IF 3.4 3区 环境科学与生态学 Q3 CELL & TISSUE ENGINEERING Regenerative Therapy Pub Date : 2024-11-21 eCollection Date: 2024-06-01 DOI:10.1016/j.reth.2024.11.003
Renjie Zuo, Quan Liao, Ziwei Ye, Chenchun Ding, Zhenzhen Guo, Junjie He, Guoyan Liu
{"title":"Antler blood enhances the ability of stem cell-derived exosomes to promote bone and vascular regeneration.","authors":"Renjie Zuo, Quan Liao, Ziwei Ye, Chenchun Ding, Zhenzhen Guo, Junjie He, Guoyan Liu","doi":"10.1016/j.reth.2024.11.003","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bone marrow mesenchymal stem cells (BMSC)-derived exosomes (Exos) are important in promoting bone and vascular regeneration. Antler blood (ALB) is a valuable traditional Chinese medicine with potent regenerative effects. However, there is still a lack of clarity regarding the relationship between ALB and BMSC-Exos.</p><p><strong>Methods: </strong>Primary BMSCs were isolated from SD Rats, and BMSC-derived Exos (BMSC-Exos) were harvested and identified accordingly. ALB was treated with the solution contained pepsin and hydrochloric acid to simulated gastrointestinal digestion <i>in vitro</i>. Furthermore, the liquid chromatography-mass spectrometry (LC-MS) was performed to determine the components of digested ALB. Moreover, ALB was utilized to intervene on BMSCs to produce specialized Exos (Exos-ALB), of which the angiogenesis functions were detected both <i>in vitro</i> and <i>in vivo</i>. For the potential mechanism, both high-throughput sequencing and proteomics were performed.</p><p><strong>Results: </strong>The main components of ALB consist of amino acids and peptides. Both ALB and BMSC-Exos exhibited significant promotion of bone and blood vessel formation, respectively. Moreover, ALB and BMSC-Exos could increase the expression of BMP-2, RUNX2, and ALP, but reduce the Osteopontin (OPN) expression. Notably, Exos-ALB exhibited the strongest performance in these functions, whereas the presence of miR-21-5p inhibitor can partially counteract the effects of Exos-ALB. The proteomics reveal differential genes associated with bone minimization, angiogenesis, osteoblast differentiation, vesicle-mediated transport, and the Wnt signaling pathway.</p><p><strong>Conclusion: </strong>ALB enhances the ability of BMSCs-derived Exos to promote bone and vascular regeneration, which may be related to the up-regulation of miR-21-5p.</p>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"1168-1180"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617708/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.reth.2024.11.003","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Bone marrow mesenchymal stem cells (BMSC)-derived exosomes (Exos) are important in promoting bone and vascular regeneration. Antler blood (ALB) is a valuable traditional Chinese medicine with potent regenerative effects. However, there is still a lack of clarity regarding the relationship between ALB and BMSC-Exos.

Methods: Primary BMSCs were isolated from SD Rats, and BMSC-derived Exos (BMSC-Exos) were harvested and identified accordingly. ALB was treated with the solution contained pepsin and hydrochloric acid to simulated gastrointestinal digestion in vitro. Furthermore, the liquid chromatography-mass spectrometry (LC-MS) was performed to determine the components of digested ALB. Moreover, ALB was utilized to intervene on BMSCs to produce specialized Exos (Exos-ALB), of which the angiogenesis functions were detected both in vitro and in vivo. For the potential mechanism, both high-throughput sequencing and proteomics were performed.

Results: The main components of ALB consist of amino acids and peptides. Both ALB and BMSC-Exos exhibited significant promotion of bone and blood vessel formation, respectively. Moreover, ALB and BMSC-Exos could increase the expression of BMP-2, RUNX2, and ALP, but reduce the Osteopontin (OPN) expression. Notably, Exos-ALB exhibited the strongest performance in these functions, whereas the presence of miR-21-5p inhibitor can partially counteract the effects of Exos-ALB. The proteomics reveal differential genes associated with bone minimization, angiogenesis, osteoblast differentiation, vesicle-mediated transport, and the Wnt signaling pathway.

Conclusion: ALB enhances the ability of BMSCs-derived Exos to promote bone and vascular regeneration, which may be related to the up-regulation of miR-21-5p.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鹿茸血增强了干细胞来源的外泌体促进骨和血管再生的能力。
背景:骨髓间充质干细胞(BMSC)衍生的外泌体(Exos)在促进骨和血管再生方面具有重要作用。鹿茸血是一种珍贵的中药,具有强大的再生作用。然而,ALB与BMSC-Exos之间的关系尚不明确。方法:从SD大鼠中分离原代BMSCs,收集BMSCs衍生的Exos (BMSCs -Exos)并进行鉴定。用胃蛋白酶和盐酸溶液处理ALB,模拟体外胃肠道消化。同时,采用液相色谱-质谱联用法测定消化后ALB的成分。此外,利用ALB干预骨髓间充质干细胞生成特异性Exos (Exos-ALB),体外和体内均检测到其血管生成功能。对于潜在的机制,我们进行了高通量测序和蛋白质组学研究。结果:ALB的主要成分为氨基酸和多肽。ALB和BMSC-Exos均能显著促进骨和血管的形成。此外,ALB和BMSC-Exos可增加BMP-2、RUNX2和ALP的表达,而降低骨桥蛋白(OPN)的表达。值得注意的是,Exos-ALB在这些功能中表现出最强的性能,而miR-21-5p抑制剂的存在可以部分抵消Exos-ALB的作用。蛋白质组学揭示了与骨最小化、血管生成、成骨细胞分化、囊泡介导的运输和Wnt信号通路相关的差异基因。结论:ALB增强bmscs来源的Exos促进骨和血管再生的能力,这可能与miR-21-5p的上调有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Regenerative Therapy
Regenerative Therapy Engineering-Biomedical Engineering
CiteScore
6.00
自引率
2.30%
发文量
106
审稿时长
49 days
期刊介绍: Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine. Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.
期刊最新文献
Human placental extract improves liver cirrhosis in mice with regulation of macrophages and senescent cells Therapeutic potential of exosomes derived from human endometrial mesenchymal stem cells for heart tissue regeneration after myocardial infarction Effects of basic fibroblast growth factor on cartilage to bone: Time-course histological analysis of in vivo cartilage formation from polydactyly-derived chondrocytes PDZRN3 regulates adipogenesis of mesenchymal progenitors in muscle Cell culture expansion media choice affects secretory, protective and immuno-modulatory features of adipose mesenchymal stromal cell-derived secretomes for orthopaedic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1